Abstracts
Résumé
De nombreux essais réalisés chez l’homme et de multiples expérimentations animales ont montré que les acides gras poly-insaturés ω-3 sont impliqués dans la mise en place et le maintien de divers organes (le cerveau en premier lieu), et qu’ils pourraient participer à la prévention de différentes pathologies (notamment les maladies cardiovasculaires ischémiques) et affections psychiatriques, dermatologiques ou rhumatologiques. Or, l’alimentation occidentale est déficiente en acides gras oméga-3. L’enjeu alimentaire est donc d’identifier les aliments qui en sont naturellement riches (voir Tableaux I et II), mais aussi de préciser l’impact réel de formulations enrichies en acides gras oméga-3 (ALA, EPA, DHA), utilisées dans les élevages, sur la valeur nutritionnelle des produits dérivés. Une synthèse des essais publiés montre que, en nourrissant par exemple les animaux avec des extraits de graines de lin ou de colza, la teneur en ALA est, dans les meilleures conditions, multipliée par environ 20 à 40 dans les oeufs, 10 dans le poulet, 6 dans la viande de porc et 2 dans celle de boeuf. En nourrissant les animaux avec des extraits de poissons ou d’algues sous forme d’huiles, la quantité de DHA est multipliée par environ 20 dans le poisson (saumon), 7 dans le poulet, 3 à 6 dans les oeufs et 2 dans la viande de boeuf. Le surcoût pour les consommateurs reste très faible par rapport au gain considérable en valeur nutritionnelle.
Summary
As shown by huge amount of assays in human as well as in animal models, ω-3 polyunsaturated fatty acids play important role in the development and maintenance of different organs, primarily the brain, and could be useful in the prevention of different pathologies, mainly the cardiovascular diseases, and, as proposed recently, some psychiatric, dermatological or rheumatological disorders. For ALA, the major and cheapest source for human is rapeseed oil (canola oil), and walnut « noix de Grenoble » oil). The actual goal is first to identify which foods are naturally rich in ω-3 fatty acids, and, second, to determine the true impact of the formulations (enriched in ω-3 fatty acids) in chows used on farms and breeding centres on the nutritional value of the products and thus their effect on the health of consumers, thanks to quantities of either ALA, or EPA or DHA or both. This concern fish (in proportion of their lipid content, mainly mackerel, salmon, sardine and herring), eggs (wildly naturally rich in ω-3 fatty acids, both ALA and DHA, or from laying hen fed ALA from linseed or rapeseed), meat from birds, mammals (from the highest concentration : rabbit, then pig and monogastrics, then polygastrics such as beef, mutton and goat) ; in butter, milk, dairy products, cheese (all naturally poor in ω-3 fatty acids)… Indeed, the nature of fatty acids of reserve triglycerides (found in more or less large amounts depending on the anatomical localisation, that is to say the butcher’s cuts) can vary mainly as a function of the food received by the animal. EPA and DHA are mainly present in animal’s products. The impact (qualitative and quantitative) of alterations in the lipid composition of animal foods on the nutritional value of derived products (in terms of EPA and DHA content) eaten by humans are more important in single-stomach animals than multi-stomach animals (due to their hydrogenating intestinal bacteria). The intestinal physiology of birds results in the relatively good preservation of their dietary ω-3 fatty acids. The enrichment in eggs is proportional to the amount of ω-3 fatty acids in the hen’s diet and can be extremely important. Including ALA in fish feeds is effective only if they are, like carp, vegetarians, as they have the enzymes required to transform ALA into EPA and DHA ; in contrast, it is probably less effective for carnivorous fish (75 % of the fish used for human), which have little of these enzymes : their feed must contain marine animals, mainly fish or fish oil. Analysis of the published results shows that, under the best conditions, feeding animals with extracts of linseed and rapeseed grains, for example, increases the level of ALA acid by 20 to 40-fold in eggs (according to the low or high level of ALA in commercial eggs), 10-fold in chicken, 6-fold in pork and less than 2-fold in beef. By feeding animals with fish extracts or algae (oils), the level of DHA is increased by 20-fold in fish, 7-fold in chicken, 3 to 6-fold in eggs, less than 2-fold in beef. In practise, the effect is considerable for fish and egg, interesting for poultry and rabbit, extremely low for beef, mutton and sheep. The effect on the price paid by the consumer is very low compared to the considerable gain in nutritional value.
Appendices
Références
- 1. Bourre JM. Acides gras oméga-3 et troubles psychiatriques. Med Sci (Paris) 2005 ; 21 : 216-21.
- 2. Bourre JM. Effets des nutriments (des aliments) sur les structures et les fonctions du cerveau : le point sur la diététique du cerveau. Rev Neurol 2004 ; 160 : 767-92.
- 3. Combe N, Boué C. Apports alimentaires en acides linoléique et alpha-linolénique d’une population d’Aquitaine. OCL 2001 ; 8 : 118-21.
- 4. Legrand P, Bourre JM, Descomps B, et al. Lipides. In : Martin A, ed. Apports nutritionnels conseillés pour la population française. Paris : Tec et Doc Lavoisier, 2000 : 63-82.
- 5. Weill P, Schmitt B, Chesneau G, et al. Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products. Ann Nutr Metab 2002 ; 46 : 182-91.
- 6. Astorg P, Arnault N, Czernichow S, et al. Dietary intakes and food sources of n-6 and n-3 PUFA in French adult men and women. Lipids 2004 ; 39 : 527-35.
- 7. Mourot J, Hermier D. Lipids in monogastric animal meat. Reprod Nutr Dev 2001 ; 41 : 109-18.
- 8. Ashes J, Siebert B, Gulati S, et al. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipid of ruminants. Lipids 1992 ; 27 : 629-31.
- 9. Ledoux M, Chardigny JM, Darbois M, et al. Variations saisonnières et régionales des taux d’acides linoléiques conjugués dans les beurres français. Sci Des Alim 2003 ; 23 : 443-62.
- 10. Keady TW, Mayne CS, Fitzpatrick DA. Effects of supplementation of dairy cattle with fish oil on silage intake, milk yield and milk composition. J Dairy Res 2000 ; 67 : 137-53.
- 11. Chilliard Y, Ferlay A, Rouel J, Lamberet GA. Review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci 2003 ; 86 : 1751-70.
- 12. Medale F, Lefevre F, Corraze G. Qualité nutritionnelle et diététique des poissons : constituants de la chair et facteurs de variation. Cah Nutr Diet 2003 ; 1 : 37-44.
- 13. Boggio S, Hardy R, Babbitt J, Brannon E. The influence of dietary lipid source and alpha-tocopheryl acetate level of product quality of rainbow trout (Salmo gairdneri). Aquaculture 1985 ; 51 : 13-24.
- 14. Dosanjh B, Higgs D, Plotnikoff D, et al. Efficacy of canola oil, pork lard and marine oil singly or in combination as supplemental dietary lipid sources for juvenil coho salmon (Oncorhynchus kisutch). Aquaculture 1984 ; 36 : 333-45.
- 15. Bell J, Henderson R, Tocher D, Sargent J. Replacement of dietary fish oil with increasing levels of linseed oil : modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 2004 ; 39 : 223-32.
- 16. Van Vliet T, Katan M. Lower ration of n-3 to n-6 fatty acids in cultured than in wild fish. Am J Clin Nutr 1990 ; 51 : 1-2.
- 17. Van Elswyk ME, Hatch SD, Stella GG, et al. Poultry-based alternatives for enhancing the ω 3 fatty acid content of American diets. World Rev Nutr Diet 1998 ; 83 : 102-15.
- 18. Simopoulos AP, Salem N. n-3 fatty acids in eggs from range-fed greek chickens. N Engl J Med 1989 ; 321 : 1412.
- 19. Cherian G, Sim JS. Effect of feeding full fat flax and canola seeds to laying hens on the fatty acid composition of eggs, embryos, and newly hatched chicks. Poultry Sci 1991 ; 70 : 917-22.
- 20. Anderson GJ, Connor WE, Corliss JD, Lin DS. Rapid modulation of the n-3 docosahexaenoic acid levels in the brain and retina of the newly hatched chick. J Lipid Res 1989 ; 30 : 433-41.
- 21. Ferrier LK, Caston LJ, Leeson S, et al. Alpha-linolenic acid- and docosahexaenoic acid-enriched eggs from hens fed flaxseed : influence on blood lipids and platelet phospholipid fatty acids in humans. Am J Clin Nutr 1995 ; 62 : 81-6.
- 22. Lewis NM, Schalch K, Scheideler SE. Serum lipid response to n-3 fatty acid enriched eggs in persons with hypercholesterolemia. J Am Diet Assoc 2000 ; 100 : 365-7.
- 23. Bondia-Martinez E, Lopez-Sabater MC, Castellote-Bargallo AI, et al. Fatty acid composition of plasma and erythrocytes in term infants fed human milk and formulae with and without docosahexaenoic and arachidonic acids from egg yolk lecithin. Early Hum Dev 1998 ; 53 : S109-S19.
- 24. Cherian G, Sim JS. Changes in the breast milk fatty acids and plasma lipids of nursing mothers following consumption of n-3 polyunsaturated fatty acid enriched eggs. Nutrition 1996 ; 12 : 8-12.
- 25. Mourot J, Camara M, Fevrier C. Effects of dietary fats of vegetable and animal origin on lipid synthesis in pigs. CR Acad Sci Paris III 1995 ; 318 : 965-70.
- 26. Saeki K, Matsumoto K, Kinoshita M, et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 2004 ;101 : 6361-6.
- 27. Ge Y, Wang X, Chen Z, et al. Gene transfer of the Caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis. J Neurochem 2002 ; 82 : 1360-6.
- 28. Bourre JM. La vérité sur les oméga-3. Paris : Odile Jacob, 2004.
- 29. Ackman RG. Nutritional composition of fats in seafoods. Prog Food Nutr Sci 1989 ; 13 : 161-289.
- 30. Denomme J, Stark KD, Holub BJ. Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr 2002 ; 135 : 206-11.
- 31. Meyer BJ, Mann NJ, Lewis JL, et al. Dietary intakes and food sources of ω-6 and ω-3 polyunsaturated fatty acids. Lipids 2003 ; 38 : 391-8.
- 32. Cahu C, Salen P, de Lorgeril M. Farmed and wild fish in the prevention of cardiovascular diseases : assessing possible differences in lipid nutritional values. Nutr Metab Cardiovasc Dis 2004 ; 14 : 34-41.
- 33. Chajes V, Bougnoux P. ω-6/ω-3 polyunsaturated fatty acid ratio and cancer. World Rev Nutr Diet 2003 ; 92 : 133-51.
- 34. Norat T, Bingham S, Ferrari P, et al. Meat, fish, and colorectal cancer risk : the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 2005 ; 97: 906-16.
- 35. Dewailly E, Mulvad G, Sloth PH, et al. Inuit are protected against prostate cancer. Cancer Epidemiol Biomarkers Prev 2003 ;12: 926-7.
- 36. Mori TA, Beilin LJ. ω-3 fatty acids and inflammation. Curr Atheroscler Rep 2004 ; 6: 461-7.
- 37. Nettleton JA, Katz R. N-3 long-chain polyunsaturated fatty acids in type 2 diabetes : A review. J Am Diet Assoc 2005 ; 105 : 428-40.