Abstracts
Résumé
Le dépliement partiel ou le repliement alternatif d'une classe de polypeptides sont à l'origine d'événements fascinants dans la cellule : dans une conformation non native, ces polypeptides constitutifs, appelés prions, sont le vecteur d'une hérédité structurale. Ces polypeptides sont responsables d'une classe de maladies neurodégénératives chez les mammifères, et de l'apparition et la propagation de caractères phénotypiques chez la levure de boulanger. La nature du changement de conformation à l'origine de l'acquisition de propriétés infectieuses par un prion correctement replié, c'est-à-dire natif, n'est pas encore totalement connue. Les modèles mécanistiques qui peuvent rendre compte de cette hérédité structurale, ainsi que l'étendue du dépliement partiel ou du repliement alternatif des prions et leur agrégation en oligomères de masse moléculaire élevée sont présentés et discutés dans cet article. Les mécanismes potentiels de régulation de la propagation des prions par les chaperons moléculaires sont également développés.
Summary
The partial unfolding or alternative folding of a class of polypeptides is at the origin of fascinating events in living cells. In their non-native conformation, these constitutive polypeptides called prions are at the origin of a protein–based structural heredity. These polypeptides are closely associated to a class of fatal neurodegenerative illnesses in mammals and to the emergence and propagation of phenotypic traits in baker's yeasts. The structural transition from the correctly folded, native form of a prion protein to a persistent misfolded form that ultimately may cause cell death or the transmission of phenotypic traits is not yet fully understood. The mechanistic models accounting for this structure-based mode of inheritance and the extent of partial unfolding of prions or their alternative folding and the subsequent aggregation process are developed and discussed. Finally, the potential regulation of prion propagation by molecular chaperones is presented.
Appendices
Références
- 1. Cuille J, Chelle PL. Pathologie animale. La maladie dite tremblante du mouton est-elle inoculable? CR Acad Sci (Paris) 1936 ; 203 : 1552-4.
- 2. Hadlow WJ. Scrapie and Kuru. Lancet 1959 ; 2 : 289-90.
- 3. Chandler RL. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1961 ; 1 : 1378-9.
- 4. Gajdusek DC. Transmissible and non-transmissible amyloidoses: autocatalytic post-translational conversion of host precursor proteins to û-pleated conformations. J Neuroimmunol 1988 ; 20 : 95-110.
- 5. Alper T, Haig DA , Clarke MC. The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 1966 ; 22 : 278-84.
- 6. Griffith JS. Self-replication and scrapie. Nature 1967 ; 215 : 1043-4.
- 7. Prusiner SB, Groth DF, Cochran SP, et al. Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 1980 ; 19 : 4883-91.
- 8. Prusiner SB, McKinley MP, Groth DF, et al. Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci USA 1981 ; 78 : 6675-9.
- 9. Prusiner SB, Bolton DC, Groth DF, et al. Further purification and characterization of scrapie prions. Biochemistry 1982 ; 26 : 6942-50.
- 10. Prusiner SB, McKinley MP, Bowman KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983 ; 35 : 349-58.
- 11. Prusiner SB, Groth DF, Bolton DC, et al. Purification and structural studies of a major scrapie prion protein. Cell 1984 ; 38 : 127-34.
- 12. Sailer A, Bueler H, Fischer M, et al. No propagation of prions in mice devoid of PrP. Cell 1994 ; 77 : 967-8.
- 13. Schätzl HM, Da Costa M, Taylor L, et al. Prion protein gene variation among primates. J Mol Biol 1995 ; 254 : 362-74.
- 14. Endo T, Groth D, Prusiner SB, Kobata A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 1989 ; 28 : 8380-8.
- 15. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987 ; 51 : 229-40.
- 16. Rudd PM, Endo T, Colominas C, et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci USA 1999 ; 96 : 13044-9.
- 17. Riek R, Hornemann S, Wider G, et al. NMR structure of the mouse prion protein domain PrP(121-321). Nature 1996 ; 382 : 180-2.
- 18. Billeter M, Riek R, Wider G, et al. Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 1997 ; 94 : 7281-5.
- 19. Huang Z, Prusiner SB, Cohen FE. Scrapie prions: a three-dimensional model of an infectious fragment. Folding Des 1996 ; 1 : 13-9.
- 20. Cantor CR, Schimmel PR. Biophysical chemistry, 12th ed. New York : WH Freeman and Co, 2001 : 409-31.
- 21. Jackson GS, Hosszu LL, Power A, et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 1999 ; 283 : 1935-7.
- 22. Hill AF, Antoniou M, Collinge. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 1999 ; 80 : 11-4.
- 23. Legname G, Baskakov IV, Nguyen HO, et al. Synthetic mammalian prions. Science 2004 ; 305 : 673-6.
- 24. Couzin J. An end to the prion debate? Don't count on it. Science 2004 ; 305 : 589.
- 25. Cox BS. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 1965 ; 20 : 505-21.
- 26. Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 1971 ; 106 : 519-22.
- 27. Wickner RB. Evidence for a prion analog in S. cerevisiae: The [URE3] non-Mendelian genetic element as an altered URE2 protein. Science 1994 ; 264 : 566-9.
- 28. Serio TR, Cashikar AG, Kowal AS, et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000 ; 289 : 1317-21.
- 29. Bousset L, Thomson NH, Radford SE, Melki R. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J 2002 ; 21 : 2903-11.
- 30. Sunde M, Serpell LC, Bartlam M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 1997 ; 273 : 729-39.
- 31. Zurdo J, Guijarro JI, Dobson CM. Preparation and characterization of purified amyloid fibrils. J Am Chem Soc 2001 ; 123 : 8141-2.
- 32. Bousset L, Briki F, Doucet J, Melki R. The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J Struct Biol 2003 ; 141 : 132-42.
- 33. Abram D, Koffler H. In vitro formation of flagella-like filaments and other structure from flagellin. J Mol Biol 1964 ; 9 : 168-85.
- 34. Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet 2002 ; 3 : 759-68.
- 35. Tuite MF, Cox BS. Propagation of yeast prions. Nat Rev 2003 ; 4 : 878-89.
- 36. Bousset L, Belrhali H, Janin J, et al. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 2001 ; 9 :39-46.