Abstracts
Résumé
La production de protéines recombinantes est une biotechnologie qui entre dans une phase de maturité, entraînant ainsi un essor de la production industrielle. Cependant, le processus de conversion systématique de l'information génétique en protéine biologiquement active se heurte au problème fondamental du repliement cellulaire des protéines : de nombreuses protéines recombinantes ne sont pas produites dans leur état natif, et s'agrègent dans un état biologiquement inactif. Bien que ce phénomène d'agrégation présente certains avantages pratiques, la renaturation in vitro des protéines recombinantes, après solubilisation des agrégats cellulaires, revêt toujours un caractère empirique et aléatoire. Aussi est-il préférable d'intervenir en amont en optimisant les conditions d'expression de la protéine, afin de minimiser ce problème au sein des cellules. Dans ce domaine, l'alternative la plus prometteuse est certainement le développement des méthodes génétiques permettant le criblage à haut débit des protéines correctement repliées dans la cellule.
Summary
The biotechnology of recombinant protein production is now entering its most advanced stage, and the growth of indusrial protein pharmaceuticals provides solid proof of this evolution. However, the sytematic conversion of genetic information into a biologically active protein is constantly confronted by the fundamental problem of protein folding in cells, and many recombinant proteins are not produced in their native state. Instead, they aggregate into a biologically inactive state. Although this aggregation reaction has some pratical advantages, in vitro renaturation of recombinant proteins, after solubilization of cellular aggregates, is still an empiric and random process. Thus, it is better to control cellular expression conditions to minimize this problem inside the cells. The most attractive approach is certainly the development of high throughput genetic screens to monitor efficient protein folding.
Appendices
Références
- 1. Pavlou AK, Reichert JM. Recombinant protein therapeutics: success rates, market trends and values to 2010. Nat Biotechnol 2004 ; 22 : 1513-9.
- 2. Braun P, LaBaer J. High throughput protein production for functional proteomics. Trends Biotechnol 2003 ; 21 : 383-8.
- 3. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol 2004 ; 22 : 346-53.
- 4. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2003 ; 2 : 52-62.
- 5. Gerngross TU. Advances in the production of human therapeutic proteins in yeast and filamentous fungi. Nat Biotechnol 2004 ; 22 : 1409-14.
- 6. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 2004 ; 22 : 1393-8.
- 7. Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 2004 ; 22 : 1415-22.
- 8. Ritz D, Beckwith J. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 2001 ; 55 : 21-48.
- 9. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochem Biophys Acta 2004 ; 1699 : 35-44.
- 10. Spirin AS. High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 2004 ; 22.
- 11. Betton JM. Rapid translation system (RTS): a promising alternative for recombinant protein production. Curr Protein Pept Sci 2003 ; 4 : 73-80.
- 12. Braun P, Hu Y, Shen B, et al. Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci USA 2002 ; 99 : 2654-9.
- 13. Kiefhaber T, Rudolph R, Kohler H-H, Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology 1991 ; 9 : 825-9.
- 14. Fink AL. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Design 1998 ; 3 : R9-23.
- 15. Carrio MM, Villaverde A. Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 2002 ; 96 : 3-12.
- 16. Fischer G, Tradler T, Zarnt T. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding versus catalysis. FEBS Lett 1998 ; 426 : 17-20.
- 17. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999 ; 286 : 1888-93.
- 18. Middelberg APJ. Preparative protein refolding. Trends Biotechnol 2002 ; 20 : 437-43.
- 19. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004 ; 22 : 1399-408.
- 20. Clark ED, Schwartz E, Rudolph R. Inhibition of aggregation side reactions during invitro protein folding. Meth Enzymol 1999 ; 309 : 217-36.
- 21. Waldo GS, Standish BM, Berendzen J, Terwilliger TC. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 1999 ; 17 : 691-5.
- 22. Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 2005 ; 23 : 102-7.
- 23. Chirino AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 2004 ; 22 : 1383-91.
- 24. Zhang Z, Gildersleeve J, Yang YY, et al. A new strategy for the synthesis of glycoproteins. Science 2004 ; 303 : 371-3.