Abstracts
Résumé
Les progrès réalisés en mathématiques appliquées permettent aujourd’hui d’envisager la simulation sur ordinateur de certains compartiments du système cardiovasculaire. Nous proposons de faire un point sur quelques modèles, en nous focalisant sur la simulation de l’écoulement du sang dans des artères déformables et sur la simulation de la contraction du myocarde sous l’effet de la propagation d’un signal électrique. Nous tentons également de présenter des applications possibles de ce type de travaux.
Summary
In this article, we aim at giving a non-technical overview of some mathematical models currently used in the numerical simulation of the cardiovascular system. A hierarchy of models for blood flows in large arteries is briefly described as well as an electromechanical model for the heart. We discuss some possible applications of the numerical simulations of such models, for example the optimization of prostheses. We also address the issue of the data assimilation for the calibration of the models.
Appendices
Références
- 1. Segers P, Stergiopulos N, Westerhof N, et al. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Engin Mathematics 2003 ; 14 : 185-99.
- 2. Monti A, Médigue C, Sorine M. Short-term control of the cardiovascular system : modelling and signal analysis. Rapport de recherche INRIA n° 4427. Paris : INRIA, 2002.
- 3. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and aterial wall shear : observation, correlation and proposal of a shear dependant mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 1971 ; 177 : 109-59.
- 4. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis : quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983 ; 53 : 502-14.
- 5. Yamamoto T, Tanaka H, Jones CJH, et al. Blood velocity profiles in the origin of the canine renal-artery and their relevance in the localization and development of atherosclerosis. Arterioscler Thromb 1992 ; 12 : 626-32.
- 6. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arterie. Circ Res 1990 ; 66 : 1045-66.
- 7. Botnar R, Rappitsch G, Scheidegger MB, et al. Hemodynamics in the carotid artery bifurcation : a comparison between numerical simulations and in vitro MRI measurements. J Biomec 2000 ; 33 : 137-44.
- 8. Gerbeau JF, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math Model Num Anal 2003 ; 37 : 663-80.
- 9. Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput Struct 2005 ; 83 : 155-65 (accessible sur http://www.sciencedirect.com/science/journal/00457949).
- 10. Quarteroni A, Rozza G. Optimal control and shape optimization in aorto-coronaric bypass anastomoses. Math Models Meth Appl Sci 2003 ; 13 : 1801-23.
- 11. Panfilov AV, Holden AV. Computational biology of the heart. Chichester : John Wiley and Sons, 1997.
- 12. Huxley AF. Muscle structure and theories of contraction. In : Progress in biophysics and biological chemistry, vol. 7, chapter 6. Oxford : Pergamon Press, 1957.
- 13. Zahalak GI. A distribution moment approximation for kinetic theories of muscular contraction. Math Biosci 1981 ; 55 : 89-114.
- 14. Bestel J, Clément F, Sorine M. A biomechanical model of muscle contraction. In : Niessen WJ, Viergever MA, eds. Lecture notes in computer science, vol. 2208. New York : Springer Verlag, 2001.
- 15. Jülicher F, Adjari A, Prost J. Modeling molecular motors. Rev Modern Phys 1997 ; 69 : 1269-81.
- 16. Hill AV. The heat of shortening and the dynamic constants in muscle. Proc Roy Soc Lond B Biol Sci 1938 ; 126 : 136-95.
- 17. Chapelle D, Clément F, Génot F, et al. A physiologically-based model for active cardiac muscle contraction. In : Katila T, Magnin I, Clarysse P, et al. eds. Functional imaging and modeling of the heart. New York : Springer Verlag, 2001.
- 18. Blum J, Le Dimet FX. Assimilation de données pour les fluides géophysiques. Matapli 2002 ; 67 : 33-55.
- 19. Sainte-Marie J, Chapelle D, Sorine M. Data assimilation for an electromechanical model of the myocardium. In : Bathe KJ, ed. Proceedings of the second MITConference on computational fluid and solid mechanics, 17-20 juin 2003, Cambridge, MA, USA, vol. 2. Amsterdam : Elsevier, 2003.