Abstracts
Résumé
Si la paramécie apparaît comme un modèle de choix pour analyser les composantes épigénétiques de l’hérédité, cela tient sans doute à sa complexité structurale et fonctionnelle qui en fait une sorte de métazoaire non cellularisé. Ses deux caractéristiques les plus atypiques, en effet, sont la complexité de son organisation corticale - offrant une énorme amplification des structures centriolaires qui n’existent ailleurs qu’en deux exemplaires par cellule - et son dualisme nucléaire, avec un micronoyau diploïde à fonction germinale et un macronoyau très polyploïde, dérivé du micronoyau, mais contenant un génome « simplifié » dédié à la transcription. Cet article tente de décrire comment l’analyse génétique de caractères touchant justement à ces particularités - l’organisation du cortex et l’expression de fonctions macronucléaires - a conduit à mettre en évidence le rôle, dans l’hérédité cellulaire chez la paramécie, de trois composantes : génome, transcriptome et « structurome », trilogie qui a quelques chances d’avoir une signification biologique, voire évolutive, générale.
Summary
Since the middle of the last century, Paramecium has appeared as an intriguing genetic model, displaying a variety of heritable characters which do not follow the Mendel laws but are cytoplasmically inherited. The analysis of the hereditary mechanisms at play in this eukaryotic unicellular organism has provided new insight into epigenetics mechanisms. Interestingly, the revealing phenomena concern two pecularities of Paramecium, its highly elaborate surface structure (with thousands of ciliary basal bodies as cytoskeleton organizers), and its nuclear dualism (coexistence of a diploid « germline » micronucleus and a highly polyploid somatic macronucleus devoted to transcription, which contains a rearranged version of the germline genome). Analysis of variant cortical organization has led to the concept of structural inheritance, implying that assembly of new organelles and supramolecular protein complexes is guided by pre-existing organization. Analysis of other cytoplasmically inherited characters revealed that the developing macronucleus is epigenetically programmed by the maternal macronucleus through RNA-mediated, homology-dependent effects, suggesting the transcriptome should be recognized as a third actor in cellular inheritance, along with the « structurome » and the genome.
Appendices
Références
- 1. Sonneborn TM. Beyond the gene. American Scientist 1949 ; 37 : 33-59.
- 2. Preer JR Jr. Whatever happened to Paramecium genetics ? Genetics 1997 ; 145 : 217-25.
- 3. Delbrück M. Unités biologiques douées de continuité génétique. Colloques internationaux du Centre national de la recherche scientifique. Paris : CNRS, 1949 ; VIII : 33-4.
- 4. Serfling E. Autoregulation : a common property of eukaryotic transcription factors ? Trends Genet 1989 ; 5 : 131-3.
- 5. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001 ; 107 : 465-76.
- 6. Cheng MY, Hartl FU, Horwich AL. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 1990 ; 348 : 455-8.
- 7. Wickner RB, Taylor KL, Edskes HK, et al. Prions in Saccharomyces and Podospora spp : protein-based inheritance. Microbiol Mol Biol Rev 1999 ; 63 : 844-61.
- 8. Iftode F, Cohen J, Ruiz F, et al. Development of surface pattern during division in Paramecium. I. Mapping of duplication and reorganization of cortical cytoskeletal structures in the wild type. Development 1989 ; 105 : 191-211.
- 9. Sonneborn TM. Does preformed cell structure play an essential role in cell heredity ? In : Allen JM, ed. The nature of biological diversity. New York : McGraw-Hill, 1963 : 165-221.
- 10. Beisson J, Sonneborn TM. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc Natl Acad Sci USA 1965 ; 53 : 275-82.
- 11. Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003 ; 15 : 96-104.
- 12. Beisson J, Jerka-Dziadosz M. Polarities of the centriolar structure : morphogenetic consequences. Biol Cell 1999 ; 91 : 367-78.
- 13. Lambert JD, Nagy LM. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavage. Nature 2002 ; 420 : 682-6.
- 14. Huynh JR, St Johnston D. The origin of asymmetry : early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 2004 ; 14 : R438-49.
- 15. Moreira-Leite FF, Sherwin T, Kohl L, et al. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 2001 ; 294 : 610-2.
- 16. Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores : from epigenetics to mitotic checkpoint. Cell 2003 ; 112 : 407-21.
- 17. Barr FA. Golgi inheritance : shaken but not stirred. J Cell Biol 2004 ; 164 : 955-8.
- 18. Kirschner M, Mitchison T. Beyond self-assembly : from microtubules to morphogenesis.Cell 1986 ; 45 : 329-42.
- 19. Chen T, Hiroko T, Chaudhuri A, et al. Multigenerational cortical inheritance of the Rax2 protein in orienting polarity and division in yeast. Science 2000 ; 290 :1975-8.
- 20. Sonneborn TM. Genetics of cellular differentiation : stable nuclear differentiation in eucaryotic unicells. Annu Rev Genet 1977 ; 11 : 349-67.
- 21. Jahn CL, Klobutcher LA. Genome remodeling in ciliated protozoa. Annu Rev Microbiol 2002 ; 56 : 489-520.
- 22. Forney JD, Blackburn EH. Developmentally controlled telomere addition in wild-type and mutant Paramecia. Mol Cell Biol 1988 ; 8 :251-8.
- 23. Epstein LM, Forney JD. Mendelian and non-Mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol Cell Biol 1984 ; 4 : 1583-90.
- 24. Jessop-Murray H, Martin LD, Gilley D, et al. Permanent rescue of a non-Mendelian mutation of Paramecium by microinjection of specific DNA sequences. Genetics 1991 ; 129 : 727-34.
- 25. Duharcourt S, Keller AM, Meyer E. Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia.Mol Cell Biol 1998 ; 18 : 7075-85.
- 26. Meyer E, Garnier O. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv Genet 2002 ; 46 : 305-37.
- 27. Garnier O, Serrano V, Duharcourt S, Meyer E. RNA-mediated programming of developmental genome rearrangements in Paramecium. Mol Cell Biol 2004 ; 24 : 7370-9.
- 28. Mochizuk K, Gorovsky MA. Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 2004 ; 14 : 181-7.
- 29. Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci USA 2004 ; 101 : 1679-84.
- 30. Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. Nat Rev Genet 2005 ; 6 : 24-35.