Abstracts
Résumé
Les modifications épigénétiques de l’activité des gènes usent de modalités très diverses pouvant toutefois se placer dans un référentiel unique fondé sur des échelles corrélées chimique, spatiale et temporelle. Ce référentiel permet d’intégrer les mutations purement génétiques à l’une de ses extrémités, autorisant ainsi une nouvelle vision graduelle allant du génome à l’épigénome au lieu de les opposer. À l’autre extrémité se trouvent deux sortes d’épimutations à grande portée spatiale, et rapides à produire un changement phénotypique : d’une part, des réarrangements de la structure tridimensionnelle du chromosome peuvent influencer l’expression génique de manière héritable ; ces réarrangements semblent eux-mêmes résulter de la dynamique collective des activités liées à l’ADN, en particulier transcriptionnelles. D’autre part, les états régulatoires héritables, par exemple une différenciation cellulaire résultant de la bascule d’un « interrupteur » régulatoire bistable, mettent en jeu des effecteurs distribués dans le noyau ou le cytoplasme, voire aux confins de la cellule.
Summary
A cell transmits to its progeny the activity level of many of its genes, not just their sequence. Just like the sequence may vary through a mutation, the gene activity level may change through an « epimutation » (an epigenetic modification) which is heritable and does not entail any concomitant genetic alteration. An epimutation can have important phenotypic consequences, that eventually survive to the loss of the environmental conditions that triggered it. For instance, epimutations are responsible for the divergence between a neuron and an epithelial cell that both come from the same egg and contain the same genome complement. This phenotypic difference is much larger than the one between the neurons from two animal species with dissimilar genotypes, thereby underlining the importance of epimutations. Tradition opposes the genetic and epigenetic visions, the latter being often adequated to the DNA methylation phenomenon. However, epimutations display a rich spectrum of modes that can all fit in a unique reference system based on correlated chemical, spatial and temporal scales. This reference system allows the integration of purely genetic mutations at one of its ends, thus paving the way to a new, gradual vision that encompasses the genome and the epigenome. At the other end can be found two types of epimutations that are both wide-ranging in space and rapid in producing phenotypic alterations. Firstly, long-range rearrangements of the three-dimensional structure of the chromosome may influence gene expression in an heritable fashion. Such rearrangements seem to result from the collective dynamics of DNA-related activities, particularly transcription. Lastly, heritable regulatory states, e.g. a differentiated state that results from tipping a regulatory « toggle switch », involve components that are distributed throughout the nucleus or the cytoplasm, and possibly all the way to cell confines.
Appendices
Références
- 1. Morange M. The relations between genetics and epigenetics : a historical point of view. Ann NY Acad Sci 2002 ; 981 : 50-60.
- 2. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science 1983 ; 220 : 1055-7.
- 3. Issa JP. CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 2000 ; 249 : 101-18.
- 4. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001 ; 414 : 277-83.
- 5. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002 ; 416 : 556-60.
- 6. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003 ; 13 : 1192-200.
- 7. Johnson L, Cao X, Jacobsen S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 2002 ; 12 : 1360-7.
- 8. Soppe WJ, Jasencakova Z, Houben A, et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 2002 ; 21 : 6549-59.
- 9. Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002 ; 297 : 1833-7.
- 10. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 2003 ; 299 : 716-9.
- 11. Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001 ; 10 : 687-92.
- 12. Minsky A, Shimoni E, Frenkiel-Krispin D. Stress, order and survival. Nat Rev Mol Cell Biol 2002 ; 3 : 50-60.
- 13. Levin-Zaidman S, Englander J, Shimoni E, et al. Ringlike structure of the Deinococcus radiodurans genome : a key to radioresistance ? Science 2003 ; 299 : 254-6.
- 14. Gerlich D, Beaudouin J, Kalbfuss B, et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 2003 ; 112 : 751-64.
- 15. Lewis PJ, Thaker SD, Errington, J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 2000 ; 19 : 710-8.
- 16. Cook PR. Predicting three-dimensional genome structure from transcriptional activity. Nat Genet 2002 ; 32 : 347-52.
- 17. Képès F. Periodic epi-organization of the yeast genome revealed by the distribution of promoter sites. J Mol Biol 2003 ; 329 : 859-65.
- 18. Képès F. Periodic transcriptional organization of the E. coli genome. J Mol Biol 2004 ; 340 : 957-64.
- 19. Képès F, Vaillant C. Transcription-based solenoidal model of chromosomes. ComPlexUs 2003 ; 1 : 171-80.
- 20. Müller-Hill B. The function of auxiliary operators. Mol Microbiol 1998 ; 29 : 13-8.
- 21. Vilar JM, Leibler S. DNA looping and physical constraints on transcription regulation. J Mol Biol 2003 ; 331 : 981-9.
- 22. Thomas R, D’Ari R. Biological feedback. Boca Raton, FL : CRC Press, 1990.
- 23. Novick A, Wiener M. Enzyme induction is an all-or-none phenomenon. Proc Natl Acad Sci USA 1957 ; 43 : 553-6.
- 24. Cohn M, Horibata K. Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced β-galactosidase synthesis. J Bacteriol 1959 ; 78 : 613-23.
- 25. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000 ; 403 : 335-8.