Abstracts
Résumé
Les récepteurs nucléaires forment une superfamille de facteurs de transcription, qui contrôlent de nombreux aspects du métabolisme cellulaire et dont l’activité est réglée par un grand nombre de ligands et de cofacteurs transcriptionnels. RIP140 (receptor interacting protein of 140 kDa), un des premiers corégulateurs identifiés, est une protéine atypique qui, si elle interagit avec les récepteurs nucléaires en présence de ligands agonistes, exerce un contrôle négatif sur leur activité transcriptionnelle. Les mécanismes responsables de cette transrépression sont complexes et impliquent plusieurs domaines, recrutant différents partenaires tels que les protéines HDAC (histone désacétylase) et CtBP (C-terminal binding protein). Le contrôle de l’expression du gène RIP140 dans les cellules de cancers hormonodépendants semble intéressant, car il implique des possibilités de boucles de régulations multiples. Enfin, l’étude du rôle biologique de RIP140 suggère qu’il est impliqué dans le contrôle hormonal de processus fondamentaux tels que l’ovulation et la thermogenèse.
Summary
Nuclear hormone receptors belong to a superfamily of ligand-activated transcription factors which regulate fundamental physiological processes. Their activity is controlled by a large number of coregulatory proteins which are, in most cases, recruited by nuclear receptors in the presence of ligand. RIP140 (receptor interacting protein of 140 kDa) was one of the first transcription cofactors to be identified almost ten years ago. This molecule is an atypical cofactor which interacts with agonist-liganded nuclear receptors but negatively regulates their transactivation potential. RIP140 exhibits nine leucine-rich motifs (LxxLL) which mediate the specific docking on the nuclear receptor ligand-binding domain. Transcription repression exerted by this cofactor implicates different mechanisms. Not only it involves a competition with coactivators such as those belonging to the p160 family, but also relies on active intrinsic repression through at least four different domains which allow recruitement of downstream repressors such as histone deacetylases (HDACs) or C-terminal binding proteins (CtBPs). The biological role of RIP140 has been investigated by disrupting the gene in mice. The lack of RIP140 expression in ovaries prevents follicle rupture and ovulation, rising to female infertility. In addition, this cofactor is also required for the control of fat storage and utilization through the regulation of genes involved in thermogenesis. Finally, RIP140 could play a role in the hormonal control of cancer cell proliferation by negatively regulating the activity of estrogen and retinoic acid receptors which are key actors in cancer growth. Interestingly, both estrogens and retinoic acid regulate RIP140 gene expression, revealing an increased level of complexity. In conclusion, RIP140 is an atypical transcription inhibitor which, by repressing nuclear hormone receptor activity, plays fundamental physiopathological roles.
Appendices
Références
- 1. Smith CL, O’Malley BW. Coregulator function : a key to understanding tissue specificity of selective receptor modulators. Endocrinol Rev 2004 ; 25 : 45-71.
- 2. Cavailles V, Dauvois S, L’Horset F, et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 1995 ; 14 : 3741-51.
- 3. Lee CH, Chinpaisal C, Wei LN. Cloning and characterization of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Mol Cell Biol 1998 ; 18 : 6745-55.
- 4. L’Horset F, Dauvois S, Heery DM, et al. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol Cell Biol 1996 ; 16 : 6029-36.
- 5. Heery DM, Hoare S, Hussain S, et al. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J Biol Chem 2001 ; 276 : 6695-702.
- 6. Subramaniam N, Treuter E, Okret S. Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J Biol Chem 1999 ; 274 : 18121-7.
- 7. Kumar MB, Tarpey RW, Perdew GH. Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 1999 ; 274 : 22155-64.
- 8. Teyssier C, Belguise K, Galtier F, et al. Receptor-interacting protein 140 binds c-Jun and inhibits estradiol-induced activator protein-1 activity by reversing glucocorticoid receptor-interacting protein 1 effect. Mol Endocrinol 2003 ; 17 : 287-99.
- 9. Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002 ; 109 : 307-20.
- 10. Cavailles V, Dauvois S, Danielian PS, Parker MG. Interaction of proteins with transcriptionally active estrogen receptors. Proc Natl Acad Sci USA 1994 ; 91 : 10009-13.
- 11. Thenot S, Charpin M, Bonnet S, Cavailles V. Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 1999 ; 156 : 85-93.
- 12. Kerley JS, Olsen SL, Freemantle SJ, Spinella MJ. Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid : a potential negative-feedback regulatory mechanism. Biochem Biophys Res Commun 2001 ; 285 : 969-75.
- 13. White R, Leonardsson G, Rosewell I, et al. The nuclear receptor co-repressor nrip1 (RIP140) is essential for female fertility. Nat Med 2000 ; 6 : 1368-74.
- 14. Katsanis N, Ives JH, Groet J, et al. Localisation of receptor interacting protein 140 (RIP140) within 100 kb of D21S13 on 21q11, a gene-poor region of the human genome. Hum Genet 1998 ; 102 : 221-3.
- 15. FitzPatrick DR, Ramsay J, McGill NI, et al. Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 2002 ; 11 : 3249-56.
- 16. Zilliacus J, Holter E, Wakui H, et al. Regulation of glucocorticoid receptor activity by 14—3-3-dependent intracellular relocalization of the corepressor RIP140. Mol Endocrinol 2001 ; 15 : 501-11.
- 17. Tazawa H, Osman W, Shoji Y, et al. Regulation of subnuclear localization is associated with a mechanism for nuclear receptor corepression by RIP140. Mol Cell Biol 2003 ; 23 : 4187-98.
- 18. An J, Ribeiro RC, Webb P, et al. Estradiol repression of tumor necrosis factor-alpha transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc Natl Acad Sci USA 1999 ; 96 : 15161-6.
- 19. Joyeux A, Cavailles V, Balaguer P, Nicolas JC. RIP 140 enhances nuclear receptor-dependent transcription in vivo in yeast. Mol Endocrinol 1997 ; 11 : 193-202.
- 20. Henttu PM, Kalkhoven E, Parker MG. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol Cell Biol 1997 ; 17 : 1832-9.
- 21. Treuter E, Albrektsen T, Johansson L, et al. A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol 1998 ; 12 : 864-81.
- 22. Wei LN, Hu X, Chandra D, et al. Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 2000 ; 275 : 40782-7.
- 23. Castet A, Boulahtouf A, Versini G, et al. Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibition. Nucleic Acids Res 2004 ; 32 : 1957-66.
- 24. Christian M, Tullet JM, Parker MG. Characterisation of four autonomous repression domains in the corepressor RIP140. J Biol Chem 2004 ; 279 : 15645-51.
- 25. Vo N, Fjeld C, Goodman RH. Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Mol Cell Biol 2001 ; 21 : 6181-8.
- 26. Leonardsson G, Jacobs MA, White R, et al. Embryo transfer experiments and ovarian transplantation identify the ovary as the only site in which nuclear receptor interacting protein 1/RIP140 action is crucial for female fertility. Endocrinology 2002 ; 143 : 700-7.
- 27. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997 ; 91 : 197-208.
- 28. Leonardsson G, Steel JH, Christian M, et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 2004 ; 101 : 8437-42.
- 29. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003 ; 113 : 159-70.
- 30. Rouayrenc JF, Castet A, Rey JM, et al. Genetic alterations of transcription cofactors in solid tumors. Bull Cancer 2002 ; 89 : 357-64.
- 31. White KA, Yore MM, Warburton SL, et al. Negative feedback at the level of nuclear receptor coregulation. Self-limitation of retinoid signaling by RIP140. J Biol Chem 2003 ; 278 : 43889-92.
- 32. Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003 ; 52 : 2951-8.
- 33. Baldus CD, Liyanarachchi S, Mrozek K, et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21 : amplification discloses overexpression of APP, ETS2 and ERG genes. Proc NatlAcad Sci USA 2004 ; 101 : 3915-20.