Abstracts
Résumé
Outre l’activité du fuseau mitotique et des protéines qui lui sont associées, les chromosomes eux-mêmes jouent un rôle important dans leur ségrégation. La séparation des chromatides nécessite la dégradation par la séparase de protéines particulières, qui agissent comme une glu formée par un complexe protéique : la cohésine. Le complexe cohésine, très conservé, est nécessaire à l’établissement et à la maintenance des chromatides à l’intérieur d’une structure en « anneau ». Ce modèle de l’anneau suggère que la cohésine posséderait une grande mobilité quand elle est associée à la chromatine. Il semble, toutefois, que la cohésine ne peut pas, seule, résister aux forces exercées par les microtubules, et doit être renforcée par une force de cohésion provenant de l’ADN. De fait, la région intérieure du centromère se comporte comme un élément élastique, et il a été montré que la titine était un composant chromosomique : d’où l’hypothèse selon laquelle elle permettrait au chromosome d’être élastique et de résister à la cassure pendant la mitose, hypothèse appuyée par le fait que la déformabilité et la rigidité des courbures chromosomiques sont en accord avec le modèle décrit pour l’élasticité de la titine.
Summary
In addition to the role in the spindle apparatus and associated motors, the chromosome themselves play an important role in facilitating chromosome segregation. Sister chromatids are joined at the centromere through a protein complex called cohesin. Chromatids separation requires the degradation by separase of specific proteins acting as a glue to form the cohesin complex. This evolutionally complex is required for the establishment and maintenance of sister chromatids in a ring like structure. It is therefore a key question whether cohesin is indeed a main component of active centromere. Cohesin is insufficient to resist the splitting force exerted by microtubules until anaphase and must be renforced by cohesion provided by flanking DNA. The ring model suggests that cohesine might possess a considerable mobility when associated with chromatin. Observations demonstrate that the interior region of the centromere behaves as an elastic element. Chromosomes display remarkable elasticity, returning to their initial shape after being extended by up to 10 times. For larger deformations the thick filament is converted in thin filament which can be stretched six times before breaking. This article suggests an additional and novel role for the protein titin on chromosome structure and dynamic. Titine was identified as a chromosomal component and it was hypothesised that titin may provide elasticity to chromosome and resistance to chromosome breakages during mitosis. The elastic properties of purified titin correspond well to the elastic properties of chromosome in living cells. The deformability and bending rigidity are consistent with a model developed for titin elasticity. The association of the presence of cohesine ring and the activity of titin could be necessary for segregation.
Appendices
Références
- 1. Pidoux AL, Allshire RC. Centromeres : getting a grip of chromosomes. Curr Opin Cell Biol 2000 ; 2 : 308-19.
- 2. Fukagawa T. Centromere DNA, proteins and kinetochore assembly in vertebrates cells. Chrom Res 2004 ; 12 : 557-67.
- 3. Roos UP. Light and electron microscopy of rat kangaroo cell in mitosis II kinetochore structure and function. Chromosoma 1973 ; 4 : 195-220.
- 4. Mehes K, Bühler EM. Premature centromere division. Am J Med Genet 1995 ; 56 : 76-9.
- 5. Fitzgerald H, Archer SZ, Morris CM. Evidence for the repeat primary non disjunction of Chr-1as the result of premature centromere division. Hum Genet 1986 ; 72 : 58-62.
- 6. Vig BK. Sequence of centromere separation : orderly separation of multicentric chromosomes in mouse cells. Chromosoma 1984 ; 90 : 39-45.
- 7. Mehes G, Tarnok K, Pajor L, Mehes K. Objective analysis of centromere separation. Hum Genet 1996 ; 97 : 365-6.
- 8. Ghosh S, Paweletz N, Schroeter D. Failure of centromere separation leads to formation of diplochromosomes in next mitosis in okadaic acid treated HeLa cells. Cell Biol Int 1993 ; 17 : 949-52.
- 9. Van Hooser AA, Mancini M, Allis CD, et al. The mammalian centromer : structural domains and the attenuation of chromatin modelling. FASEB J 1999 ; 13 (suppl 2) : S216-20.
- 10. Rattner JB. The structure of mamalian centromere. BioEssays 1991 ; 13 : 51-6.
- 11. Wheatley SP, Kandels-Lewis SE, Adams RR, et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp Cell Res 2001 ; 262 : 122-7.
- 12. Hirano T. SMC protein complexes and higher order chromosomes dynamics. Curr Opin Cell Biol 1998 ; 10 : 317-22.
- 13. Nicklas RB. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 1983 ; 987 : 542-8.
- 14. Rieder CL, Cole RW, Khodjakov A, Sluder G. The chekpoint delaying anaphase in reponse to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochore. J Cell Biol 1995 ; 130 : 941-8.
- 15. Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of α-satellite DNA domains visualized in situ in living human cells. J Cell Biol 1996 ; 135 : 545-57.
- 16. Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerisation activity. Curr Biol 2004 ; 14 : 273-86.
- 17. Yanagida M. Frontier questions about sister chromatid separation in anaphase. BioEssays 1995 ; 17 : 519-26.
- 18. Koshland D, Guacci V. Sister chromatid cohesion : the beginning of a long and beautiful relationships. Curr Opin Cell Biol 2000 ; 12 : 297-301.
- 19. Michaelis C, Ciosk R, Nasmyth K. Cohesins : chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997 ; 91 : 35-45.
- 20. Hearing CH, Nasmyth K. Building and breaking bridges between sisters chromatids. BioEssays 2003 ; 25 : 1178-91.
- 21. Tanaka T, Fuchs J, Loidl J, Nasmyth K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resist their precocious separation. Nat Cell Biol 2000 ; 2 : 492-5.
- 22. Campbell JL, Cohen-Fix O. Chromosome cohesion : ring around the sisters. Trends Biochem Sci 2002 ; 27 : 492-5.
- 23. Bernard P, Allshire RC. Centromeres become unstuck without heterochromatin. Trends Cell Biol 2002 ; 12 : 419-24.
- 24. Losada J, Hirano T. Intermolecular DNA interactions stimulated by the cohesion complex in vitro. Implications for sister chromatides cohesion. Curr Biol 2001 ; 11 : 268-72.
- 25. Claussen U, Mazur A, Rubtsov N. Chromosomes are highly elastic and can be stretched. Cytogenet Cell Genet 1994 ; 66 : 120-5.
- 26. Houchmandzadeh B, Marko JF, Chatenay D, Libchaber L. Elasticity and structure of the eukaryotic chromosome studied by micromanipulation and micropipette aspiration. J Cell Biol 1997 ; 139 : 1-12.
- 27. Houchmandzadeh B, Dimitrov S. Elasticity measurments show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 1999 ; 145 : 215-23.
- 28. Machado C, Andrew D. D-titin : a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000 ; 151 : 639-52.
- 29. Machado C, Sunkel CE, Andrew D. Human antibodies reveal titin as chromosomal protein. J Cell Biol 1998 ; 141 : 321-33.
- 30. Astier C, Labbe JP, Roustan C, Benyamin Y. Effect of different enzymatic treatments on the release of titin fragments from rabbit skeletal myofibrils. Biochem J 1993 ; 293 : 731-4.
- 31. Astier C, Raynaud F, Lebart MC, et al. Binding of the native titin fragments to actin is regulated by PIP2. FEBS Lett 1998 ; 429 : 95-8.
- 32. Runger-Brandle E, Chapponnier C, Gabbiani G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes bloks chromosomes condensation. Nature 1979 ; 282 : 320-1.
- 33. Silverman RV, Forer A. Evidence that actin and myosin are involved in the polarward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. J Cell Sci 2000 ; 113 : 597-609.