Abstracts
Résumé
L’application des méthodes de la biologie moléculaire à l’étude des premières étapes de l’évolution a montré que le monde vivant pouvait être divisé en trois domaines : archées, bactéries et eucaryotes. Cette découverte a mis à l’ordre du jour le problème de Luca, le dernier ancêtre commun à tous les organismes cellulaires actuels (thelast universal common ancestor). Ce problème peut être abordé aujourd’hui sur des bases plus solides, grâce à la génomique comparative : celle-ci nous apprend que Luca possédait une membrane cytoplasmique et un appareil de traduction déjà relativement sophistiqué. En revanche, la nature de son génome reste inconnue : faisait-il encore partie du monde à ARN, ou avait-il déjà un génome à ADN ? De nouvelles hypothèses sont avancées, qui font intervenir les virus dans l’apparition de l’ADN et la formation des trois domaines. Connaître Luca est essentiel si nous voulons retracer l’histoire évolutive des mécanismes moléculaires présents chez les organismes actuels.
Summary
One of the most important outcomes of modern biology has been the demonstration of the unity of life. All living beings are in fact descendants of a unique ancestor commonly referred to as Luca (the Last universal common ancestor). The discovery — nearly 30 years ago by Carl Woese – that present-day life on our planet can be assigned to only three domains: two of prokaryotic nature (Archaea and Bacteria), and one eukaryoyic (Eucarya), has given birth to a new field of investigation aimed at determining the nature of Luca. Today, thanks to the accumulation of genomic data, we can loop back into the past and infer a few characters of Luca by comparing what present-day organisms have in common. For example, it is now clear that Luca was a cellular organism provided with a cytoplasmic membrane, and that it harboured already a quite sophisticated translation apparatus. However, the inference of other characters of Luca from comparative genomics is less straightforward: for instance, a few key molecular mechanisms for DNA replication are non-homologous across the three domains and their distribution is often puzzling. This evidence has been embraced by proponents of the hypothesis that Luca harboured an RNA genome and that its replacement by DNA and the appearance of the corresponding molecular systems would have occurred independently in the three life domains after their divergence. However, an equally likely scenario would be that of a Luca with a DNA genome and of a subsequent replacement of its DNA-replication systems by non-homologous counterparts either in the bacterial or in the archaeal/eukaroytic branch. Nevertheless, including the viral world into the picture of the tree of life may thus provide us with precious insights into our most distant past since the invention and spread potential of viruses may have played a key role in early evolution.
Appendices
Références
- 1. A la recherche de Luca (http://www-archbac.u-psud.fr/Meetings/LesTreilles/ lesTreilles.html).
- 2. The last universal common ancestor (http://www.actionbioscience.org/ newfrontiers/poolepaper.html).
- 3. Woese CR, Fox GE. The concept of cellular evolution. J Mol Evol 1977 ; 10 : 1-6.
- 4. Dobzhansky T. Nothing in biology makes sense, except in the light of evolution. Amm Biol Teachers 1973 ; 35 : 125-9.
- 5. Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003 ; 1 : 127-36.
- 6. Pereto J, Lopez-Garcia P, Moreira D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 2004 ; 29 : 469-77.
- 7. Lopez-Garcia P, Moreira D. On hydrogen transfer and a chimeric origin of eukaryotes. Trends Biochem Sci 1999 ; 24 : 424.
- 8. Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004 ; 431 : 152-5.
- 9. Penny D, Poole A. The nature of the last universal common ancestor. Curr Opin Genet Dev 1999 ; 9 : 672-7.
- 10. Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Res 1999 ; 27 : 3389-401.
- 11. Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 1996 ; 93 : 10268-73.
- 12. Poole AM, Logan DT. Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 2005 ; 22 : 1444-55.
- 13. Forterre P. Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol Microbiol 1999 ; 33 : 457-65.
- 14. Filee J, Forterre P, Laurent J. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Res Microbiol 2003 ; 154 : 237-43.
- 15. Bamford DH. Do viruses form lineages across different domains of life? Res Microbiol 2003 ; 154 : 231-6.
- 16. Forterre P. The great virus comeback: from an evolutionary perspective. Res Microbiol 2003 ; 154 : 223-5.
- 17. Merckel MC, Huiskonen JT, Bamford DH, et al. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol Cell 2005 ; 18 : 161-70.
- 18. Rice G, Tang L, Stedman K, et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 2004 ; 101 : 7716-20.
- 19. Forterre P. The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 2002 ; 5 : 525-32.
- 20. Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 2005 (sous presse).
- 21. Fuerst JA, Webb R. Membrane-bounded nucleoid in eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 1991 ; 88 : 8184-8.
- 22. Lindsay MR, Webb RI, Strous M, et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 2001 ; 175 : 413-29.
- 23. Lowe J, van den Ent F, Amos LA. Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 2004 ; 33 : 177-98.
- 24. Raoult D, Audic S, Robert C, et al. The 1.2-megabase genome sequence of Mimivirus. Science 2004 ; 306 : 1344-50.
- 25. Bell PJ. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J Mol Evol 2001 ; 53 : 251-6.
- 26. Claverie JM. Un virus encore plus géant que les autres. Med Sci (Paris) 2005 ; 21 : 15-6.
- 27. Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 2001 ; 52 : 419-25.
- 28. Moreira D, Lopez-Garcia P. Comment on The 1.2-megabase genome sequence of Mimivirus. Science 2005 ; 308 : 1114.
- 29. Raoult D, Audic S, Robert C, et al. Response to comment on the 1.2 megabase genome sequence of Mimivirus. Science 2005 ; 308 : 1114b.