Abstracts
Résumé
Le gène suppresseur de tumeurs p53 contrôle l’expression d’une collection de gènes réglant le cycle cellulaire et l’apoptose, empêchant ainsi la prolifération de cellules porteuses de dommages et de remaniements génétiques. Cependant, une série de travaux a mis en évidence un nouveau mécanisme, indépendant de l’activité de transactivateur de transcription, par lequel p53 participe au maintien de la stabilité du génome : la répression de la recombinaison homologue. Ce rôle nouvellement décrit prévient l’instabilité génétique due à un excès de recombinaison homologue associé aux stress génotoxiques. Il s’exerce directement par l’interaction de la protéine p53 avec les protéines de recombinaison homologue et avec les structures d’ADN intermédiaires. Le domaine central de p53 est impliqué dans l’interaction avec Rad51, à une étape précoce de la recombinaison homologue, et le domaine carboxyterminal de p53 est nécessaire à son interaction avec Rad54 et avec les intermédiaires de recombinaison homologue, à une étape tardive de la recombinaison homologue. L’implication potentielle de ce mécanisme parallèle de p53 pour la stabilité du génome, la spéciation et la protection tumorale sera discutée.
Summary
The tumor suppressor gene p53, which is the most frequently mutated gene in human tumors, controls cell cycle checkpoint and apoptosis via the transactivation of the transcription of a collection of genes. These activities avoid proliferation of cell bearing alteration of genetic material. However, like a two-edged sword, p53 can also directly participate to genome stability maintenance by repressing homologous recombination (HR), independently of the transactivation activity. This parallel activity allows to limit the deleterious consequences on an excess of HR. Beside genetic interactions, p53 protein physically interacts with both HR proteins and HR intermediates (heteroduplex and Holliday junctions). The core domain of p53 is required for interaction with Rad51 at an early step and the carboxy-terminal domain of p53 is involved in the interaction with Rad54 and HR intermediates, at a late step. We discuss here the putative consequences of this parallel activity of p53 on genome stability, speciation and tumor protection.
Appendices
Références
- 1. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997 ; 88 : 323-31.
- 2. Amor M, Parker KL, Globerman H, et al. Mutation in the CYP21B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA 1988 ; 85 : 1600-4.
- 3. Purandare SM, Patel PI. Recombination hot spots and human disease. GenomeRes 1997 ; 7 : 773-86.
- 4. Wiesmuller L, Cammenga J, Deppert WW. In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J Virol 1996 ; 70 : 737-44.
- 5. Bishop AJ, Hollander MC, Kosaras B, et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res 2003 ; 63 : 5335-43.
- 6. Meyn MS, Strasfeld L, Allen C. Testing the role of p53 in the expression of genetic instability and apoptosis in ataxia-telangiectasia. Int J Radiat Biol 1994 ; 66 : S141-9.
- 7. Bertrand P, Rouillard D, Boulet A, et al. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 1997 ; 14 : 1117-22.
- 8. Mekeel KL, Tang W, Kachnic LA, et al. Inactivation of p53 results in high rates of homologous recombination. Oncogene 1997 ; 14 : 1847-57.
- 9. Gebow D, Miselis N, Liber HL. Homologous and nonhomologous recombination resulting in deletion : effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol Cell Biol 2000 ; 20 : 4028-35.
- 10. Lu X, Lozano G, Donehower LA. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system. Mutat Res 2003 ; 522 : 69-83.
- 11. Saintigny Y, Rouillard D, Chaput B, et al. Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 1999 ; 18 : 3553-63.
- 12. Lambert S, Lopez BS. Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms. EMBO J 2000 ; 19 : 3090-9.
- 13. Wang YY, Maher VM, Liskay RM, McCormick JJ. Carcinogens can induce homologous recombination between duplicated chromosomal sequences in mouse L cells. Mol Cell Biol 1988 ; 8 : 196-202.
- 14. Akyuz N, Boehden GS, Susse S, et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 2002 ; 22 : 6306-17.
- 15. Michel B, Flores MJ, Viguera E, et al. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 2001 ; 98 : 8181-8.
- 16. Saintigny Y, Delacote F, Vares G, et al. Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 2001 ; 20 : 3861-70.
- 17. Saintigny Y, Lopez BS. Homologous recombination induced by replication inhibition is stimulated by expression of mutant p53. Oncogene 2002 ; 21 : 488-92.
- 18. Janz C, Wiesmuller L. Wild-type p53 inhibits replication-associated homologous recombination. Oncogene 2002 ; 21 : 5929-33.
- 19. Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 2003 ; 22 : 1210-22.
- 20. Dudenhoffer C, Kurth M, Janus F, et al. Dissociation of the recombination control and the sequence-specific transactivation function of p53. Oncogene 1999 ; 18 : 5773-84.
- 21. Willers H, McCarthy EE, Wu B, et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 2000 ; 19 : 632-9.
- 22. Linke SP, Sengupta S, Khabie N, et al. p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 2003 ; 63 : 2596-605.
- 23. Yoon D, Wang Y, Stapleford K, et al. P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 2004 ; 336 : 639-54.
- 24. Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 1997 ; 272 : 7532-9.
- 25. Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995 ; 81 : 1013-20.
- 26. Buchhop S, Gibson MK, Wang XW, et al. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res 1997 ; 25 : 3868-74.
- 27. Bertrand P, Saintigny Y, Lopez BS. p53’s double life : transactivation-independent repression of homologous recombination. Trends Genet 2004 ; 20 : 235-43.
- 28. Dudenhoffer C, Rohaly G, Will K, et al. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 1998 ; 18 : 5332-42.
- 29. Susse S, Janz C, Janus F, et al. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 2000 ; 19 : 4500-12.
- 30. Degtyareva N, Subramanian D, Griffith JD. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem 2001 ; 276 : 8778-84.
- 31. Zink D, Mayr C, Janz C, Wiesmuller L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 2002 ; 21 : 4788-800.
- 32. Subramanian D, Griffith JD. Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 2002 ; 30 : 2427-34.
- 33. Waldman AS, Liskay RM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 1988 ; 8 : 5350-7.
- 34. Rayssiguier C, Thaler DS, Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 1989 ; 342 : 396-401.
- 35. Jimenez GS, Nister M, Stommel JM, et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat Genet 2000 ; 26 : 37-43.
- 36. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999 ; 285 : 1733-7.
- 37. Deng C, Zhang P, Harper JW, et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995 ; 82 : 675-84.
- 38. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell 1983 ; 33 : 25-35.
- 39. Rossignol JL. La recombinaison homologue : mécanismes et conséquences. Med Sci (Paris) 1990 ; 6 : 4-9.