Abstracts
Résumé
Les mitochondries jouent un rôle central dans le métabolisme énergétique cellulaire. Une de leurs particularités est de posséder leur propre génome, dont la transmission est exclusivement maternelle. Leur implication dans la reproduction humaine est une notion relativement récente qui suscite un intérêt scientifique et médical croissant. Elles peuvent influencer la qualité des ovocytes et des spermatozoïdes, mais aussi la fécondation et le développement embryonnaire. De nouvelles techniques thérapeutiques telles que le transfert de cytoplasme ovocytaire compromettent fortement la transmission uniparentale de l’ADN mitochondrial et soulèvent d’importantes questions éthiques. Cet article tente de faire le point sur les acquisitions récentes concernant le rôle des mitochondries dans la fertilité et la reproduction humaines.
Summary
Mitochondria play a primary role in cellular energetic metabolism. They possess their own DNA, which is exclusively maternally transmitted. The relatively recent idea that mitochondria may be directly involved in human reproduction is arousing increasing interest in the scientific and medical community. It has been shown that the functional status of mitochondria contributes to the quality of oocytes and spermatozoa, and plays a part in the process of fertilisation and embryo development. Moreover, new techniques, such as ooplasm transfer, compromise the uniquely maternal inheritance of mitochondrial DNA, raising important ethical questions. This review discusses recent information about mitochondria in the field of human fertility and reproduction.
Appendices
Références
- 1. Cohen N, Lestienne P. Les maladies mitochondriales. Paris : Annales de l’Institut Pasteur/Actualités Elsevier, 2001 : 136 p.
- 2. Delbart C. Les mitochondries : biologie et incidences physiopathologiques. Paris : Tec & Doc, 2000 : 168 p.
- 3. Larsson NG, Oldfors A, Garman JD, et al. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum Mol Genet 1997 ; 6 : 185-91.
- 4. Ruiz-Pesini E, Lapena AC, Diez C, et al. Seminal quality correlates with mitochondrial functionality. Clin Chim Acta 2000 ; 300 : 97-105.
- 5. Hecht NB, Liem H, Kleene KC, et al. Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Dev Biol 1984 ; 102 : 452-61.
- 6. May-Panloup P, Chretien MF, Savagner F, et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod 2003 ; 18 : 550-6.
- 7. Shitara H, Kaneda H, Sato A, et al. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 2000 ; 156 : 1277-84.
- 8. Folgero T, Bertheussen K, Lindal S, et al. Mitochondrial disease and reduced sperm motility. Hum Reprod 1993 ; 8 : 1863-8.
- 9. Lestienne P, Reynier P, Chretien MF, et al. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod 1997 ; 3 : 811-4.
- 10. Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem 2001 ; 8 : 851-62.
- 11. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev 1995 ; 7 : 659-68.
- 12. Cummins J. Mitochondrial DNA in mammalian reproduction. Rev Reprod 1998 ; 3 : 172-82.
- 13. Reynier P, Chretien MF, Savagner F, et al. Long PCR analysis of human gamete mtDNA suggests defective mitochondrial maintenance in spermatozoa and supports the bottleneck theory for oocytes. Biochem Biophys Res Commun 1998 ; 252 : 373-7.
- 14. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 2000 ; 67 : 682-96.
- 15. Rossato M, La Sala GB, Balasini M, et al. Sperm treatment with extracellular ATP increases fertilization rates in in vitro fertilization for male factor infertility. Hum Reprod 1999 ; 14 : 694-7.
- 16. Ahmadi A, Ng SC. Sperm head decondensation, pronuclear formation, cleavage and embryonic development following intracytoplasmic injection of mitochondria-damaged sperm in mammals. Zygote 1997 ; 5 : 247-53.
- 17. Thompson WE, Ramalho-Santos J, Sutovsky P. Ubiquitination of prohibitin in Mammalian sperm mitochondria : possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 2003 ; 69 : 254-60.
- 18. Sutovsky P, Moreno RD, Ramalho-Santos J, et al. Ubiquitin tag for sperm mitochondria. Nature 1999 ; 402 : 371-2.
- 19. Kaneda H, Hayashi J, Takahama S, et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995 ; 92 : 4542-6.
- 20. Janse RP. Germline passage of mitochondria : Quantitative considerations and possible embryological sequelae. Hum Reprod 2000 ; 15 (suppl 2) : 112-28.
- 21. Steuerwald N, Barritt JA, Adler R, et al. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 2000 ; 8 : 209-15.
- 22. Reynier P, May-Panloup P, Chretien MF, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 2001 ; 7 : 425-9.
- 23. Chen X, Prosser R, Simonetti S, et al. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 1995 ; 57 : 239-47.
- 24. Tamassia M, Nuttinck F, May-Panloup P, et al. In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial dna, and mitochondrial dna haplogroup. Biol Reprod 2004 (sous presse).
- 25. Piko L and Chase DG. Role of the mitochondrial genome during early development in mice. Effects of ethidium bromide and chloramphenicol. J Cell Biol 1973 ; 58 : 357-78.
- 26. Biggers JD, Stern S. Metabolism of the preimplantation mammalian embryo. Adv Reprod Physiol 1973 ; 6 : 1-59.
- 27. Taylor KD, Piko L. Mitochondrial biogenesis in early mouse embryos : expression of the mRNAs for subunits IV, Vb, and VIIc of cytochrome c oxidase and subunit 9 (P1) of H(+)-ATP synthase. Mol Reprod Dev 1995 ; 40 : 29-35.
- 28. Dvorak M, Tesarik J. Differenciation of mitochondria in the human pre-implantation embryo grown. In Vitro Scr Med 1985 ; 3 : 161-70.
- 29. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod 1995 ; 10 : 415-24.
- 30. Flood JT, Chillik CF, van Uem JF, et al. Ooplasmic transfusion : prophase germinal vesicle oocytes made developmentally competent by microinjection of metaphase II egg cytoplasm. Fertil Steril 1990 ; 53 : 1049-54
- 31. Dale B, Wilding M, Botta G, et al. Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility : case report. Hum Reprod 2001 ; 16 : 1469-72.
- 32. Van Blerkom J, Sinclair J, Davis P. Mitochondrial transfer between oocytes : potential applications of mitochondrial donation and the issue of heteroplasmy. Hum Reprod 1998 ; 13 : 2857-68.
- 33. Perez GI, Trbovich AM, Gosden RG, et al. Mitochondria and the death of oocytes. Nature 2000 ; 403 : 500-1.
- 34. Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987 ; 123 : 364-74.
- 35. St John JC. The transmission of mitochondrial DNA following assisted reproductive techniques. Theriogenology 2002 ; 57 : 109-23.
- 36. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med 2002 ; 347 : 576-80.
- 37. Danan C, Sternberg D, Van Steirteghem A, et al. Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection. Am J Hum Genet 1999 ; 65 : 463-73.
- 38. Cohen J, Scott R, Schimmel T, et al. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 1997 ; 350 : 186-7.
- 39. Barritt JA, Brenner CA, Malter HE, et al. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod 2001 ; 16 : 513-6.