Abstracts
Résumé
La défense des organismes contre l’invasion de leur génome par des éléments transposables, des séquences rétrovirales ou des séquences répétées, est essentielle pour le maintien de l’intégrité de l’information génétique. Les mécanismes assurant cette défense restent largement inconnus, mais des résultats récents montrent qu’ils concernent le contrôle de l’expression de ces séquences à la fois au niveau transcriptionnel et post-transcriptionnel. Le contrôle post-transcriptionnel des séquences répétées présente des similitudes avec l’interférence par l’ARN (ARNi), un phénomène spécifique d’extinction des gènes induit par la présence de molécules d’ARN double brin. Ce phénomène est maintenant largement étudié et les différentes étapes de son mécanisme sont progressivement identifiées. Il est particulièrement intéressant de souligner que des acteurs importants du mécanisme de l’ARNi sont également impliqués dans la régulation spatio-temporelle du développement.
Summary
Living organisms have to fight against the invasion of many parasites. Among them are viruses and transposable elements that are able to integrate in the genome of their host. After integration, they can replicate and propagate. The defence mechanisms against these invaders are still largely unknown but are widely studied in plants as well as in fungi and animals, particularly Caenorhabditis elegans and Drosophila melanogaster. The compilation of recent data allows us to draw a general scheme for these mechanisms. In particular, it seems that the propagation of viruses, transposable elements and repeated sequences is controlled by mechanisms repressing the expression of these sequences at both transcriptional and post-transcriptional levels. Post-transcriptional regulation of repeated sequences and transposable elements is related to RNA interference (RNAi), an evolutionary conserved silencing process induced by the presence of double-stranded RNAs (dsRNAs). Many genes and molecular intermediates have now been identified, revealing the different steps of the mechanism underlying this process. Finally, different results suggest that these post-transcriptional silencing processes are involved in the development of organisms. DICER is a nuclease responsible for the processing of dsRNA into short RNA molecules (siRNAs) considered as the interfering agent. siRNAs interact with the transcript of the targeted gene and this interaction induces degradation of the transcript. DICER is also involved in the processing of small temporal RNAs (stRNA) involved in the timing of development. stRNAs have the same structure as siRNAs. They regulate their target genes by interacting with elements present in their 3’UTR and blocking translation. RNAi appears to be an universal regulatory mechanism that was still unknown a few years ago. It is now largely used in large scale inactivation of genes to determine their function, and some recent studies indicate that it might be used in human therapy.
Appendices
Références
- 1. Dorer DR, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 1994 ; 77 : 993-1002.
- 2. Orlando V. Polycomb, epigenomes, and control of cell identity. Cell 2003 ; 112 : 599-606.
- 3. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000 ; 403 : 41-5.
- 4. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila : gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 1997 ; 90 : 479-90.
- 5. Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 1985 ; 5 : 3484-96.
- 6. Kelly WG, Schaner CE, Dernburg AF, et al. X-chromosome silencing in the germline of C. elegans. Development 2002 ; 129 : 479-92.
- 7. Couteau F, Guerry F, Muller F, Palladino F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep 2002 ; 3 : 235-41.
- 8. Kelly WG, Fire A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 1998 ; 125 : 2451-6.
- 9. Emmons SW, Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 1984 ; 36 : 599-605.
- 10. Emmons SW, Roberts S, Ruan KS. Evidence in a nematode for regulation of transposon excision by tissue-specific factors. Mol Gen Genet 1986 ; 202 : 410-5.
- 11. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999 ; 99 : 133-41.
- 12. Ketting RF, Plasterk RH. A genetic link between co-suppression and RNA interference in C. elegans. Nature 2000 ; 404 : 296-8.
- 13. Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 2000 ; 14 : 1578-83.
- 14. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 ; 391 : 806-11.
- 15. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl AcadSci USA 1998 ; 95 : 15502-7.
- 16. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001 ; 107 : 465-76.
- 17. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001 ; 15 : 2654-9.
- 18. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001 ; 106 : 23-34.
- 19. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in C. elegans. Science 2001 ; 2 : 2.
- 20. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001 ; 409 : 363-6.
- 21. Sijen T, Plasterk RH. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003 ; 426 : 310-4.
- 22. Schmidt A, Palumbo J, Bozetti MP, et al. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 1999 ; 151 : 749-60.
- 23. Aravin AA, Naumova NM, Tulin AV, et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 2001 ; 11 : 1017-27.
- 24. Tomari Y, Du T, Haley B, et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 2004 ; 116 : 831-41.
- 25. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001 ; 15 : 188-200.
- 26. Plasterk RH. RNA silencing : The genome’s immune system. Science 2002 ; 296 : 1263-5.
- 27. Ambros V. MicroRNAs : Tiny regulators with great potential. Cell 2001 ; 107 : 823-6.
- 28. Lin SY, Johnson SM, Abraham M, et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003 ; 4 : 639-50.
- 29. Dudley NR, Labbe JC, Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci USA 2002 ; 99 : 4191-6.
- 30. Pal-Bhadra M, Bhadra U, Birchler JA. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 2002 ; 9 : 315-27.
- 31. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002 ; 3 : 737-47.
- 32. Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002 ; 12 : 1301-11.
- 33. Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002 ; 418 : 430-4.
- 34. Caudy AA, Ketting RF, Hammond SH, et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003 ; 425 : 411-4.
- 35. Tijsterman M, Ketting RF, Okihara KL, et al. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 2002 ; 295 : 694-7.
- 36. Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 2002 ; 109 : 861-71.
- 37. Williams RW, Rubin GM. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 2002 ; 99 : 6889-94.
- 38. Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001 ; 293 : 1146-50.
- 39. Kennerdell JR, Yamaguchi S, Carthew RW. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 2002 ; 16 : 1884-9.
- 40. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 1999 ; 99 : 35-46.
- 41. Sarot E, Payen-Groschene G, Bucheton A, Pelisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 2004 ; 166 : 1313-21.
- 42. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002 ; 16 : 2497-508.
- 43. Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 2004 ; 116 : 817-29.
- 44. Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002 ; 16 : 2491-6.
- 45. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi : Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000 ; 101 : 25-33.