Abstracts
Résumé
Le sulfure d’hydrogène (H2S) est produit dans de nombreux tissus, et notamment dans le cerveau, où il joue un rôle de neuromodulateur. H2S augmente ainsi les réponses mises en jeu par les récepteurs NMDA et facilite l’induction d’une potentialisation à long terme dans l’hippocampe. L’altération de la concentration de l’activateur physiologique de la cystathionine β synthase, enzyme responsable de la synthèse d’H2S dans le cerveau, explique la diminution de la concentration d’H2S dans les cerveaux de sujets atteints de maladie d’Alzheimer. L’hyperproduction d’H2S décrite chez les sujets trisomiques 21 est probablement liée à l’hyperexpression de cette même enzyme, dont le gène est localisé sur le chromosome 21.
Summary
The formation of H2S from cyst(e)ine is catalyzed by three enzymes, cystathionine β synthase, cystathionase, and 3-mercaptopyruvate sulfurtransferase. In the liver, kidney, enterocytes and vascular smooth muscle cells, H2S is principally synthesized by cystathionase. In contrast, it is synthesized by cystathionine β synthase in the brain and partially by 3-mercaptopyruvate sulfurtransferase in cardiac tissue. H2S is catabolized, essentially in mitochondria by thiosulfate reductase. The sulfite generated is then oxidized to sulfate by sulfite oxidase. The amount of thiosulfate excreted in the urine is the best indicator of H2S biosynthesis, together with sulfhemoglobin determination in erythrocytes. H2S acts as a neuromodulator in the brain, increasing responses mediated by NMDA receptors, facilitating the induction of long-term potentialization in the hippocampus. H2S also acts as a vasodilator, acting directly on ATP-dependent potassium channels in vascular smooth muscle cells. The concentration of H2S is abnormally low in the brains of subjects with Alzheimer’s disease, due to changes in the concentration of the physiological activator of cystathionine β synthase. The overproduction of H2S described in subjects with Down’s syndrome probably results from the overproduction of cystathionine β synthase, as the gene encoding this protein is located on chromosome 21.
Appendices
Références
- 1. Goodwin LR, Francom D, Dieken FP, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography : Post-mortem studies and two case reports. J Anal Toxicol 1989 ; 13 : 105-9.
- 2. Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning : Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 1989 ; 38 : 973-81.
- 3. Savage JC, Gould DH. Determination of sulfides in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 1990 ; 526 : 540-5.
- 4. Baranano DE, Ferris CD, Snyder SH. Atypical neural messengers. Trends Neurosci 2001 ; 24 : 99-106.
- 5. Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982 ; 206 : 267-77.
- 6. Stipanuk MH, De la Rosa J, Hirschberger LL. Catabolism of cyst(e)ine by rat renal cortical tubules. J Nutr 1990 ; 120 : 450-8.
- 7. Coloso RM, Stipanuk MH. Metabolism of cyst(e)ine in rat enterocytes. J Nutr 1989 ; 119 : 1914-24.
- 8. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996 ; 16 : 1066-71.
- 9. Watanabe M, Osada J, Aratani Y, et al. Mice deficient in cystathionine β-synthase : Animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 1995 ; 92 : 1585-9.
- 10. Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. J Neursci 2002 ; 22 : 3386-91.
- 11. Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002 ; 26 : 13-9.
- 12. Wang R. Two’s company, three’s a crowd : can H2S be the third endogenous gaseous transmitter. FASEB J 2002 ; 16 : 1792-8.
- 13. Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 2000 ; 267 : 129-33.
- 14. Dello Russo C, Tringali G, Ragazzoni E, et al. Evidence that hydrogen sulfide can modulate hypothalamo-pituitary-adrenal axis function : in vitro and in vivo studies in the rat. J Neuroendocrinol 2000 ; 12 : 225-33.
- 15. Navarra P, Dello Russo C, Mancuso C, et al. Gaseous neuromodulators in the control of neuroendocrine stress axis. Ann NY Acad Sci 2000 ; 917 : 638-46.
- 16. Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 2002 ; 293 : 1485-8.
- 17. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997 ; 237 : 527-31.
- 18. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 2001 ; 20 : 6008-16.
- 19. Taoka S, Banerjee R. Characterization of NO binding to human cystathionine beta-synthase : possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 2001 ; 87 : 245-51.
- 20. Chadefaux B, Rethore MO, Raoul O, et al. Cystathionine β synthase : Gene dosage effect in trisomy 21. Biochem Biophys Res Commun 1985 ; 128 : 40-4.
- 21. Chadefaux B, Ceballos I, Hamet M, et al. Is absence of atheroma in Down syndrome due to decreased homocysteine levels ? Lancet 1988 ; 2 : 741.
- 22. Kamoun P. Mental retardation in Down syndrome : a hydrogen sulfide hypothesis. Med Hypoth 2001 ; 57 : 389-92.
- 23. Belardinelli MC, Chabli A, Chadefaux B, Kamoun P. Urinary sulfur compounds in Down’s Syndrome. Clin Chem 2001 ; 47 : 1500-1.
- 24. Kamoun P, Belardinelli MC, Chabli A, et al. Endogenous hydrogen sulfide overproduction in Down’s syndrome. Am J Med Genet 2003 ; 116A : 310-1.
- 25. Yamanashi T, Tuboi S. The mechanism of the L-cystine cleavage reaction catalyzed by rat liver gamma-cystathionase. J Biochem 1981 ; 89 : 1913-21.
- 26. Stipanuk MH. Metabolism of sulfur-containing aminoacids. Ann Rev Nutr 1986 ; 6 : 179-209.
- 27. Koj A, Frendo J, Wojczak I. Subcellular distribution and intramitochondrial localization of three sulfurtransferases in rat liver. FEBS Lett 1975 ; 57 : 42-66.
- 28. Ubuka T, Yuasa S, Ishimoto Y, Shimomura M. Desulfuration of L-cysteine through transamination and transsulfuration in rat liver. Physiol Chem Phys 1977 ; 9 : 241-6.
- 29. Ogasawara Y, Isoda S, Tanabe S. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 1994 ; 17 : 1535-42.
- 30. Nagahara N, Ito T, Kitamura H, Nishino T. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat : confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 1998 : 110 ; 243-50.
- 31. Sorbo B. On the formation of thiosulfate from inorganic sulfide by liver tissues and heme compounds. Biochim Biophys Acta 1958 ; 27 : 324-9.
- 32. Ubuka T, Ohta J, Yao WB, et al. L-cysteine metabolism in a mercaptopyruvate pathway and sulfate formation in rat liver mitochondria. Amino Acids 1992 ; 2 : 143-55.
- 33. Westley J. Rhodanese and the sulfane pool. In : Jacoby WB, ed. Enzymatic basis of detoxication, vol. 2. New York : Academic Press, 1980 : 245-62.
- 34. Beauchamp Jr RO, Bus JS, Popp JA, et al. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 1984 ; 13 : 25-97.
- 35. Kangas J, Savolainen H. Urinary thiosulphate as an indicator of exposure to hydrogen sulphide vapour. Clin Chim Acta 1987 ; 164 : 7-10.