Abstracts
Résumé
Les biomatériaux sont au centre d’innovations importantes dans le traitement des traumatismes, de certaines affections (en particulier cardio-vasculaires) ou du vieillissement. Des progrès se poursuivent actuellement dans le cadre du génie tissulaire en s’intégrant dans une approche plus large qui fait appel aux avancées techniques de la chimie des polymères, des biotechnologies, et de la thérapie cellulaire et génique. Cette approche pluridisciplinaire vise à associer dans une même unité fonctionnelle un matériau (synthétique ou naturel) si possible dégradable, et une composante cellulaire, dans une architecture tridimensionnelle. Il s’agit de favoriser avec ces nouveaux biomatériaux hybrides, l’aptitude de l’organisme à se réparer. De ce champ d’investigations, des innovations importantes sont attendues, en particulier dans le domaine du remplacement des vaisseaux. Du génie biologique et médical au génie tissulaire, les biomatériaux occupent toujours une place centrale.
Summary
Biomaterials are already widely used in medical sciences. The field of biomaterials began to shift to produce materials able to stimulate specific cellular responses at the molecular level. The combined efforts of cell biologists, engineers, materials scientists, mathematicians, geneticists, and clinicians are now used in tissue engineering to restore, maintain, or improve tissue functions or organs. This rapidly expanding approach combines the fields of material sciences and cell biology for the molecular design of polymeric scaffolds with appropriate 3D configuration and biological responses. Future developments for new blood vessels will require improvements in technology of materials and biotechnology together with the increased knowledge of the interactions between materials, blood, and living tissues. Biomaterials represent a crucial mainstay for all these studies.
Appendices
Références
- 1. Auger FA. Le génie tissulaire : du rêve à la réalité.Med Sci (Paris) 2000 ; 16 : 1324-31.
- 2. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro.Science 1999 ; 284 : 489-93.
- 3. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity.Circ Res 1999 ; 85 : 1173-8.
- 4. Parikh SA, Edelman ER. Endothelial cell delivery for cardiovascular therapy.Adv Drug Deliv Rev 2000 ; 42 : 139-61.
- 5. Kong X, Grabitz RG, van OW, et al. Effect of biologically active coating on biocompatibility of Nitinol devices designed for the closure of intra-atrial communications.Biomaterials 2002 ; 23 : 1775-83.
- 6. Bisson I, Kosinski M, Ruault S, et al. Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells.Biomaterials 2002 ; 23 : 3149-58.
- 7. Montdargent B, Letourneur D. Toward new biomaterials.Infect Control Hosp Epidemiol 2000 ; 21 : 404-10.
- 8. Porte-Durrieu MC, Labrugere C, Villars F, et al. Development of RGD peptides grafted onto silica surfaces : XPS characterization and human endothelial cell interactions.J Biomed Mater Res 1999 ; 46 : 368-75.
- 9. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype.J Biomed Mater Res 2002 ; 60 : 217-23.
- 10. Lateef SS, Boateng S, Hartman TJ, et al. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion.Biomaterials 2002 ; 23 : 3159-68.
- 11. Quirk RA, Chan WC, Davies MC, et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid).Biomaterials 2001 ; 22 : 865-72.
- 12. Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process.Biomaterials 2002 ; 23 : 585-96.
- 13. Jeschke B, Meyer J, Jonczyk A, et al. RGD-peptides for tissue engineering of articular cartilage.Biomaterials 2002 ; 23 : 3455-63.
- 14. Nakayama Y, Ji-Youn K, Nishi S, et al. Development of high-performance stent : Gelatinous photogel-coated stent that permits drug delivery and gene transfer.J Biomed Mater Res 2001 ; 57 : 559-66.
- 15. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents : one-year angiographic and intravascular ultrasound follow-up.Circulation 2001 ; 104 : 2007-11.
- 16. Deux JF, Meddahi-Pelle A, Le Blanche AF, et al. Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model.Arterioscler Thromb Vasc Biol 2002 ; 22 : 1604-9.
- 17. Deux JF, Prigent-Richard S, d’Angelo G, et al. A chemically modified dextran inhibits smooth muscle cell growth in vitro and intimal in stent hyperplasia in vivo.J Vasc Surg 2002 ; 35 : 973-81.
- 18. Feldman LJ, Aguirre L, Ziol M, et al. Interleukin-10 inhibits intimal hyperplasia after angioplasty or stent implantation in hypercholesterolemic rabbits.Circulation 2000 ; 101 : 908-16.
- 19. Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking.J Vasc Surg 1984 ; 1 : 279-89.
- 20. Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients : a 9-year experience.Surgery 1999 ; 126 : 847-55.
- 21. Kaushal S, Amiel GE, Guleserian KJ, et al. Functionnal small-diameter neovessels created using endothelial progenitor cells expended ex vivo.Nat Med 2001 ; 7 : 1035-40.
- 22. Radomski M, Jarell B, Pratt K, et al. Effects of in vitro aging on human endothelial cell adherence to dacron vascular graft materials.J Vasc Surg 1989 ; 47 : 173-7.
- 23. Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, et al. Phenotypic and functional changes in regenerated porcine coronary endothelial cells : Increased uptake of modified LDL and reduced production of NO. Circ Res 2000 ; 2000 : 854-61.
- 24. Pittenger MF, Mackay AM, Beck SC. Multilineage potential of adult human mesenchymal stem cells.Science 1999 ; 284 : 143-7.
- 25. Kadner A, Hoerstrup SP, Zund G, et al. A new source for cardiovascular tissue engineering : human bone marrow stromal cells.Eur J Cardiothorac Surg 2002 ; 21 : 1055-60.
- 26. Gomes D, Louedec L, Plissonnier D, et al. Endoluminal smooth muscle cell seeding limits intimal hyperplasia.J Vasc Surg 2001 ; 34 : 707-15.
- 27. Pierce EC. Autologous tissue tubes for aortic grafts in dogs.Surgery 1953 ; 33 : 648.
- 28. L’Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel.FASEB J 1998 ; 12 : 47-56.
- 29. Tranquillo RT, Girton TS, Bromberek BA, et al. Magnetically-oriented tissue equivalent tubes.Biomaterials 1995 ; 17 : 349-53.
- 30. Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts : morphologic characteristics of aortic isografts, allografts, and xenografts in rats.J Vasc Surg 1994 ; 19 : 446-56.
- 31. Field PL. The chemically treated bovine ureter. Clinical performance of a nouvel biological vascular prosthesis.Cardiovasc Surg 2003 ; 11 : 30-4.
- 32. Tsukagoshi T, Yenidunya MO, Sasaki E, et al. Experimental vascular graft using small-caliber fascia-wrapped fibrocollagenous tube : short-term evaluation.J Reconstr Microsurg 1999 ; 15 : 127-31.
- 33. Huynh T, Abraham G, Murray J, et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel.Nat Biotechnol 1999 ; 17 : 1083-6.
- 34. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells.Science 1986 ; 231 : 397-400.
- 35. Niklason LE. Techview : medical technology. Replacement arteries made to order.Science 1999 ; 286 : 1493-4.