Abstracts
Résumé
Les rétinites pigmentaires constituent un groupe important de maladies héréditaires de la rétine caractérisées par une perte bilatérale de la vision périphérique et de la vision nocturne (nyctalopie). Ce sont des dystrophies hétérogènes sur le plan génétique : parmi les différents groupes identifiés jusqu’à présent, RP12, une forme sévère autosomique récessive, est due à des mutations dans le gène CRUMBS1 (CRB1) qui code pour une protéine transmembranaire. L’étude chez la drosophile montre que la protéine est nécessaire pour l’établissement des jonctions adhérentes des épithéliums et pour l’élongation des photorécepteurs. Le gène crumbs agit de concert avec des gènes tels que discs lost et stardust, et l’étude du mécanisme d’action de ce complexe chez la mouche permet d’esquisser des hypothèses pour comprendre les causes cellulaires des RP12. Ces travaux devraient favoriser la conception d’une approche thérapeutique encore inexistante pour ces dégénérescences rétiniennes humaines.
Summary
Degeneration of retina can have many causes and among the genes involved, CRB1 has been shown to be associated with Retinitis pigmentosa (RP) group 12 and Leber congenital amaurosis (LCA), two dramatic pathologies in young patients. CRB1 belongs to a family of genes conserved from Caenorhabditis elegans to human. In Drosophila melanogaster, for example, crb is essential both for the formation of the adherens junctions in epithelial cells of ectodermal origin during gastrulation and for the morphogenesis of photoreceptors in the eye. Crumbs is a transmembrane protein with a short cytoplasmic domain that interacts with scaffold proteins, Stardust and Discs lost, and with the apical cytoskeleton made of moesin and βheavy-spectrin. The extracellular domain of Crumbs is essential for its function in photoreceptors but so far there are no known proteins interacting with it. In human, there are three known crb homologues, CRB1, 2 and 3, and CRB1 is expressed in the retina and localizes to the adherens junctions of the rods. Based on the model drawn from Drosophila, CRB1 could be involved in maintaining the morphology of rods to ensure a normal function of the retina. This is supported by the fact that the homologues of the known partners of Crumbs are also conserved in human and expressed in the retina. Understanding the precise molecular mechanism by which CRB1 acts will help to find new therapies for patients suffering from RP12 and LCA.
Appendices
Références
- 1. Pierce EA. Pathways to photoreceptor cell death in inherited retinal degenerations. Bioessays 2001 ; 23 : 605-18.
- 2. Williams DS, Arikawa K, Paallysaho T. Cytoskeletal components of the adherens junctions between the photoreceptors and the supportive Muller cells. J Comp Neurol 1990 ; 295 : 155-64.
- 3. den Hollander AI, ten Brink JB, de Kok YJ, et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 1999 ; 23 : 217-21.
- 4. den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 2001 ; 69 : 198-203.
- 5. den Hollander AI, Johnson K, de Kok YJ, et al. CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. Hum Mol Genet 2001 ; 10 : 2767-73.
- 6. den Hollander AI, Ghiani M, de Kok YJ, et al. Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain. Mech Dev 2002 ; 110 : 203-7.
- 7. Tepass U, Theres C, Knust E. Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 1990 ; 61 : 787-99.
- 8. Tepass U, Tanentzapf G, Ward R, Fehon R. Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 2001 ; 35 : 747-84.
- 9. Wodarz A, Grawe F, Knust E. CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development. Mech Dev 1993 ; 44 : 175-87.
- 10. Wodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 1995 ; 82 : 67-76.
- 11. Klebes A, Knust E. A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr Biol 2000 ; 10 : 76-85.
- 12. Bachmann A, Schneider M, Theilenberg E, et al. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 2001 ; 414 : 638-43.
- 13. Hong Y, Stronach B, Perrimon N, et al. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 2001 ; 414 : 634-8.
- 14. Tepass U, Knust E. Crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev Biol 1993 ; 159 : 311-26.
- 15. Grawe F, Wodarz A, Lee B, et al. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 1996 ; 122 : 951-9.
- 16. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins : Structure and role in the tight junction. Semin Cell Dev Biol 2000 ; 11 : 315-24.
- 17. Bhat MA, Izaddoost S, Lu Y, et al. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 1999 ; 96 : 833-45.
- 18. Medina E, Williams J, Klipfell E, et al. Crumbs interacts with moesin and βheavy-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 2002 ; 158 : 941-51.
- 19. Zarnescu DC, Thomas GH. Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J Cell Biol 1999 ; 146 : 1075-86.
- 20. Polesello C, Delon I, Valenti P, et al. D-moesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 2002 ; 4 : 782-9.
- 21. Tabuse Y, Izumi Y, Piano F, et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorrhabditis elegans. Development 1998 ; 125 : 3607-14.
- 22. Ohno S. Intercellular junctions and cellular polarity : The PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001 ; 13 : 641-8.
- 23. Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2000 ; 2 : 531-9.
- 24. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol 2002 ; 12 : 221-5.
- 25. Wodarz A, Ramrath A, Grimm A, Knust E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 2000 ; 150 : 1361-74.
- 26. Petronczki M, Knoblich JA. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 2001 ; 3 : 43-9.
- 27. Nunbhakdi-Craig V, Machleidt T, Ogris E, et al. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 2002 ; 158 : 967-78.
- 28. Tsukita S, Furuse M. Occludin and claudins in tight-junction strands : Leading or supporting players ? Trends Cell Biol 1999 ; 9 : 268-73.
- 29. Knust E, Bossinger O. Composition and formation of intercellular junctions in epithelial cells. Science 2002 ; 298 : 1955-9.
- 30. Suzuki A, Yamanaka T, Hirose T, et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia- specific junctional structures.J Cell Biol 2001 ; 152 : 1183-96.
- 31. Itoh M, Sasaki H, Furuse M, et al. Junctional adhesion molecule (JAM) binds to PAR-3 : A possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001 ; 154 : 491-7.
- 32. Lemmers C, Medina E, Delgrossi MH, et al. hINADl/PATJ, a homolog of Discs lost, interacts with Crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 2002 ; 277 : 25408-15.
- 33. Roh MH, Liu CJ, Laurinec S, Margolis B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 2002 ; 277 : 27501-9.
- 34. Roh MH, Makarova O, Liu CJ, et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 2002 ; 157 : 161-72.
- 35. Straight SW, Shin K, Fogg VC, et al. Loss of PALS1 expression leads to tight junction and polarity defects. Mol Biol Cell 2004 ; 15 : 1981-90.
- 36. Roh MH, Fan S, Liu CJ, Margolis B. The Crumbs3-Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J Cell Sci 2003 ; 116 : 2895-906.
- 37. Lemmers C, Michel D, Lane-Guermonprez L, et al. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 2004 ; 15 : 1324-33.
- 38. Pellikka M, Tanentzapf G, Pinto M, et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002 ; 416 : 143-9.
- 39. Mehalow AK, Kameya S, Smith RS, et al. CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 2003 ; 12 : 2179-89.
- 40. Izaddoost S, Nam SC, Bhat MA, et al. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 2002 ; 416 : 178-83.
- 41. Johnson K, Grawe F, Grzeschik N, Knust E. Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol 2002 ; 12 : 1675-80.
- 42. Wei X, Malicki J. Nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat Genet 2002 ; 31 : 150-7.
- 43. Horne-Badovinac S, Lin D, Waldron S, et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 2001 ; 11 : 1492-502.
- 44. Bessant DA, Ali RR, Bhattacharya SS. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 2001 ; 11 : 307-16.