Abstracts
Résumé
Les vaisseaux sanguins sont en permanence soumis à des contraintes mécaniques associées à la pression artérielle, de caractère pulsé, et au flux sanguin. Toute variation de ces contraintes est perçue au niveau des cellules vasculaires et se traduit par des modifications fonctionnelles et structurales des vaisseaux. De nombreux récepteurs, présents à la surface des cellules endothéliales, sont sensibles aux forces de cisaillement. Les intégrines, reliant la matrice extracellulaire aux sites d’adhérence focale et au cytosquelette, peuvent transmettre et moduler la tension mécanique dans la cellule. Par ailleurs, les contraintes mécaniques agissent sur les canaux ioniques, stimulent des récepteurs membranaires et induisent des cascades complexes d’événements biochimiques. De nombreuses voies intracellulaires, telles que la voie des MAP-kinases, sont activées par le flux sanguin et aboutissent à l’induction de facteurs de transcription qui contrôlent l’expression des gènes. Ainsi, par des mécanismes purement locaux, le vaisseau sanguin est capable de s’adapter à son environnement mécanique.
Summary
Blood vessels are permanently subjected to mechanical forces in the form of stretch and shear stress. Any alterations in the hemodynamic environment invariably produce transformations in the vessel wall that will aim to accommodate the new conditions and to ultimately restore basal levels of mechanical forces. Many receptors, present on the surface of endothelial cells, allow vessels to detect subtle changes in shear stress. Inside the cells, cytoskeletal proteins transmit and modulate the tension between integrins, focal adhesion sites, and the extracellular matrix. Besides inducing structural modifications, mechanical forces lead to changes in the ionic composition of cells, mediated by ion channels, stimulate various membrane receptors, and induce complex biochemical cascades. Many intracellular pathways such as the MAP kinase cascade are activated by shear stress and initiate via sequential phosphorylations the activation of transcription factors and subsequent gene expression. Thus, by purely local mechanisms, blood vessels are capable of true autonomic regulation which enables them to adapt to their mechanical environment.
Appendices
Références
- 1. Glagov S. Intimal hyperplasia, vascular remodeling, and restenosis problem. Circulation 1994 ; 89 : 2888-91.
- 2. Tronc F, Wassef M, Esposito B, et al. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 1996 ; 16 : 1256-62.
- 3. Tronc F, Mallat Z, Lehoux S, et al. Role of matrix metalloproteinases in blood flow-induced arterial enlargement. Arterioscler Thromb Vasc Biol 2000 ; 20 : E120-6.
- 4. Jalali S, del Pozo MA, Chen K, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 2001 ; 98 : 1042-6.
- 5. Muller JM, Chilian WM, Davis MJ. Integrin signaling transduces shear stress-dependent vasodilation of coronary arterioles. Circ Res 1997 ; 80 : 320-6.
- 6. Bhullar IS, Li YS, Miao H, et al. Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 1998 ; 273 : 30544-9.
- 7. Hoger JH, Ilyin VI, Forsyth S, Hoger A. Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci USA 2002 ; 99 : 7780-5.
- 8. Ohno M, Gibbons GH, Dzau VJ, Cooke JP. Shear stress elevated endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 1993 ; 88 : 193-7.
- 9. Gudi SR, Clark CB, Frangos JA. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 1996 ; 79 : 834-9.
- 10. Hsieh HJ, Li NQ, Frangos JA. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J Cell Physiol 1993 ; 154 : 143-51.
- 11. Hansen CA, Schroering AG, Carey DJ, Robishaw JD. Localization of a heterotrimeric G protein γ subunit to focal adhesions and associated stress fibers. J Cell Biol 1994 ; 126 : 811-29.
- 12. Chen KD, Li YS, Kim M, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 1999 ; 274 : 18393-400.
- 13. De Keulenaer GW, Chappell DC, Ishizaka N, et al. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state : role of a superoxide-producing NADH oxidase. Circ Res 1998 ; 82 : 1094-101.
- 14. Silacci P, Desgeorges A, Mazzolai L, et al. Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 2001 ; 38 : 1162-6.
- 15. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999 ; 399 : 601-5.
- 16. Dimmeler S, Assmus B, Hermann C, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells : involvement in suppression of apoptosis. Circ Res 1998 ; 83 : 334-41.
- 17. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001 ; 280 : F193-206.
- 18. Mallat Z, Tedgui A. Apoptosis in the vasculature : Mechanisms and functional importance. Br J Pharmacol 2000 ; 130 : 947-62.
- 19. Ishida T, Peterson TE, Kovach NL, Berk BC. MAP kinase activation by flow in endothelial cells : role of beta 1 integrins and tyrosine kinases. Circ Res 1996 ; 79 : 310-6.
- 20. Carbajal JM, Schaeffer RC, Jr. RhoA inactivation enhances endothelial barrier function. Am J Physiol 1999 ; 277 : C955-64.
- 21. Li S, Chen BP, Azuma N, et al. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 1999 ; 103 : 1141-50.
- 22. Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998 ; 32 : 338-45.
- 23. Li S, Kim M, Hu YL, et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 1997 ; 272 : 30455-62.
- 24. Barberis L, Wary KK, Fiucci G, et al. Distinct roles of the adaptor protein Shc and focal adhesion kinase in integrin signaling to ERK. J Biol Chem 2000 ; 275 : 36532-40.
- 25. Jo H, Sipos K, Go YM, et al. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem 1997 ; 272 : 1395-401.
- 26. Abe J, Okuda M, Huang Q, et al. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 2000 ; 275 : 1739-48.
- 27. Resnick N, Collins T, Atkinson W, et al. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive-element. Proc Natl Acad Sci USA 1993 ; 90 : 4591-5.
- 28. McCormick SM, Eskin SG, McIntire LV, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2001 ; 98 : 8955-60.
- 29. Bongrazio M, Baumann C, Zakrzewicz A, et al. Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress. Cardiovasc Res 2000 ; 47 : 384-93.
- 30. Chen BP, Li YS, Zhao Y, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 2001 ; 7 : 55-63.
- 31. Garcia-Cardena G, Comander J, Anderson KR, et al. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001 ; 98 : 4478-85.
- 32. Adams LD, Geary RL, McManus B, Schwartz SM. A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000 ; 87 : 623-31.
- 33. Tulis DA, Prewitt RL. Medial and endothelial platelet-derived growth factor A chain expression is regulated by in vivo exposure to elevated flow. J Vasc Res 1998 ; 35 : 413-20.
- 34. Negishi M, Lu D, Zhang YQ, et al. Upregulatory expression of furin and transforming growth factor-beta by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2001 ; 21 : 785-90.
- 35. Gan L, Doroudi R, Hagg U, et al. Differential immediate-early gene responses to shear stress and intraluminal pressure in intact human conduit vessels. FEBS Lett 2000 ; 477 : 89-94.
- 36. Doroudi R, Gan LM, Selin Sjogren L, Jern S. Effects of shear stress on eicosanoid gene expression and metabolite production in vascular endothelium as studied in a novel biomechanical perfusion model. Biochem Biophys Res Commun 2000 ; 269 : 257-64.
- 37. Gan L, Miocic M, Doroudi R, et al. Distinct regulation of vascular endothelial growth factor in intact human conduit vessels exposed to laminar fluid shear stress and pressure. Biochem Biophys Res Commun 2000 ; 272 : 490-6.