Abstracts
Résumé
Dans un premier article (voir m/s n° 4, avril 2004), nous avons souligné que des déterminants de polarité ou de développement précoce et les mécanismes qui président à leur localisation et à leur expression n’ont pour l’instant été identifiés que dans quelques espèces. Dans ces espèces - l’insecte Drosophila melanogaster, le ver Caenorhabditis elegans, le crapaud Xenopus laevis et les ascidies Ciona intestinalis et Halocynthia roretzi - l’ovogenèse, la fécondation, les modes de division et de développement diffèrent considérablement mais des thèmes communs apparaissent (rôle des ARNm corticaux, des protéines de polarité PAR, réorganisations relayées par le cytosquelette). Nous revenons ici sur ces différences et ces similitudes et les restituons dans un contexte chronologique, de l’ovocyte à la gastrula. Deux autres organismes modèles classiques - la souris et l’oursin - viennent compléter le tableau des comparaisons, représenté sous forme d’un Poster (qui peut être téléchargé sur le site http://biodev.obs-vlfr.fr/biomarcell).
Summary
In an accompanying article (C. Sardet et al. m/s 2004 ; 20 : 414-423) we reviewed determinants of polarity in early development and the mechanisms which regulate their localization and expression. Such determinants have for the moment been identified in only a few species : the insect Drosophila melanogaster, the worm Caenorhabditis elegans, the frog Xenopus laevis and the ascidians Ciona intestinalis and Holocynthia roretzi. Although oogenesis, fertilization, and cell divisions in these embryos differ considerably, with respect to early polarities certain common themes emerge, such as the importance of cortical mRNAs, the PAR polarity proteins, and reorganizations mediated by the cytoskeleton. Here we highlight similarities and differences in axis establishment between these species, describing them in a chronological order from oocyte to gastrula, and add two more classical model organisms, sea urchin and mouse, to complete the comparisons depicted in the form of a Poster which can be downloaded from the site http://biodev.obs-vlfr.fr/biomarcell.
Appendices
Références
- 1. Wilson EB. The cell in development and inheritance. New York : Macmillan, 1896.
- 2. Child CM. Patterns and problems of development. Chicago, 1941.
- 3. Sardet C, Prodon, F, Pruliere, G, Chenevert J. Polarisation des oeufs et des embryons : principes communs. Med Sci(Paris) 2004 ; 20 : 414-23.
- 4. Goldstein B, Freeman G. Axis specification in animal development. BioEssays 1997 ; 19 : 105-16.
- 5. Goldstein B, Frisse LM, Thomas WK. Embryonic axis specification in nematodes: Evolution of the first step in development. Curr Biol 1998 ; 8 : 157-60.
- 6. Gilbert SF. developmental biology. Sunderland, Massachusetts: Sinauer Associates Inc., 2000 : 749
- 7. Wolpert L. Principles of development. New York: Oxford University Press Inc., 2002 : 542
- 8. Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila. PARallels and differences. Science 2002 ; 298 : 1946-50.
- 9. Wodarz A. Establishing cell polarity in development. Nat Cell Biol 2002 ; 4 : E39-44.
- 10. Jaffe LA, Giusti AF, Carroll DJ, Foltz KR. Ca2+ signalling during fertilization of echinoderm eggs. Sem Cell Dev Biol 2001 ; 12 : 45-51.
- 11. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 1999 ; 211 : 157-76.
- 12. Sardet C, Prodon F, Dumollard R, et al. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002 ; 241 : 1-23.
- 13. Sardet C, McDougall A, Houliston E. Cytoplasmic domains in egg. Trends Cell Biol 1994 ; 4 : 166-71.
- 14. Frick JE, Ruppert EE. Primordial germ cells and oocytes of Branchiostoma virginiae (Cephalochordata, Acrania) are flagellated epithelial cells: Relationship between epithelial and primary egg polarity. Zygote 1997 ; 5 : 139-51.
- 15. Wylie C. Germ cells. Curr Opin Genet Dev 2000 ; 10 : 410-3.
- 16. Matova N, Cooley L. Comparative aspects of animal oogenesis. Dev Biol 2001 ; 231 : 291-320.
- 17. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998 ; 40 : 1-10.
- 18. Carre D, Djediat C, Sardet C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 2002 ; 129 : 661-70.
- 19. Gard DL. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Microsc Res Tech 1999 ; 44 : 388-414.
- 20. Houston DW, King ML. Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 2000 ; 50 : 155-81.
- 21. Kloc M, Bilinski S, Chan AP, et al. RNA localization and germ cell determination in Xenopus. Int Rev Cytol 2001 ; 203 : 63-91.
- 22. Chang P, Perez-Mongiovi D, Houliston E. Organisation of Xenopus oocyte and egg cortices. Microsc Res Tech 1999 ; 44 : 415-29.
- 23. Kloc M, Zearfoss NR, Etkin LD. Mechanisms of subcellular mRNA localization. Cell 2002 ; 108 : 533-44.
- 24. Gard DL. Axis formation during amphibian oogenesis : Re-evaluating the role of the cytoskeleton. Curr Top Dev Biol 1995 ; 30 : 215-52.
- 25. Terasaki M, Runft LL, Hand AR. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 2001 ; 12 : 1103-16.
- 26. Verlhac MH, Lefebvre C, Guillaud P, et al. Asymmetric division in mouse oocytes : With or without Mos. Curr Biol 2000 ; 10 : 1303-6.
- 27. Fernandez J, Roegiers F, Cantillana V, Sardet C. Formation and localization of cytoplasmic domains in leech and ascidian zygotes. Int J Dev Biol 1998 ; 42 : 1075-84.
- 28. Nishida H. Specification of developmental fates in ascidian embryos: Molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 2002 ; 217 : 227-76.
- 29. Sasakura Y, Ogasawara M, Makabe KW. Two pathways of maternal RNA localization at the posterior-vegetal cytoplasm in early ascidian embryo. Dev Biol 2000 ; 220 : 365-78.
- 30. Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003 ; 130 : 5839-49.
- 31. King ML, Zhou Y, Bubunenko M. Polarizing genetic information in the egg: RNA localization in the frog oocyte. BioEssays 1999 ; 21 : 546-57.
- 32. Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Gene Expr Patterns 2002 ; 2 : 145-50.
- 33. Choi SC, Kim J, Han JK. Identification and developmental expression of par-6 gene in Xenopus laevis. Mech Dev 2000 ; 91 : 347-50.
- 34. Ohno S. Intercellular junctions and cellular polarity: The PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001 ; 13 : 641-8.
- 35. Van Eeden F, St Johnston D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Op Gen Dev 1999 ; 9 : 396-404.
- 36. Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 2001 ; 11 : 374-83.
- 37. Navarro C, Lehmann R, Morris J. Oogenesis: Setting one sister above the rest. Curr Biol 2001 ; 11 : R162-5.
- 38. Lopez-Schier H. The polarisation of the anteroposterior axis in Drosophila. Bioessays 2003 ; 25 : 781-91.
- 39. Kemphues K. PARsing embryonic polarity. Cell 2000 ; 101 : 345-8.
- 40. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001 ; 35 : 365-406.
- 41. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 2002 ; 4 : 592-8.
- 42. Houchmandzadeh B, Wieschaus E, Leibler S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 2002 ; 415 : 798-802.
- 43. Blankenship JT, Wieschaus E. Two new roles for the Drosophila AP patterning system in early morphogenesis. Development 2001 ; 128 : 5129-38.
- 44. Anderson KV. Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo. Cell 1998 ; 95 : 439-42.
- 45. Dissing M, Giordano H, DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. Embo J 2001 ; 20 : 2387-93.
- 46. Stathopoulos A, Van Drenth M, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 2002 ; 111 : 687-701.
- 47. Saunders CM, Larman MG, Parrington J, et al. PLC zeta: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 2002 ; 129 : 3533-44.
- 48. Suzuki K, Tanaka Y, Nakajima Y, et al. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Biophys J 1995 ; 68 : 739-48.
- 49. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000 ; 1 : 11-21.
- 50. Roegiers F, McDougall A, Sardet C. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 1995 ; 121 : 3457-66.
- 51. Dumollard R, Sardet C. Three different calcium wave pacemakers in ascidian eggs. J Cell Sci 2001 ; 114 : 2471-81.
- 52. Roegiers F, Djediat C, Dumollard R, et al. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 1999 ; 126 : 3101-17.
- 53. Xanthos JB, Kofron M, Tao Q, et al. The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 2002 ; 129 : 4027-43.
- 54. Holland LZ. Body-plan evolution in the bilateria: Early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 2000 ; 10 : 434-42.
- 55. Samuel AD, Murthy VN, Hengartner MO. Calcium dynamics during fertilization in C. elegans. BMC Dev Biol 2001 ; 1 : 8.
- 56. Golden A. Cytoplasmic flow and the establishment of polarity in C. elegans 1-cell embryos. Curr Opin Genet Dev 2000 ; 10 : 414-20.
- 57. Goldstein B. Embryonic polarity: A role for microtubules. Curr Biol 2000 ; 10 : R820-2.
- 58. Lyczak R, Gomes JE, Bowerman B. Heads or tails: Cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002 ; 3 : 157-66.
- 59. Rappleye CA, Paredez AR, Smith CW, et al. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 1999 ; 13 : 2838-51.
- 60. Gonczy P. Mechanisms of spindle positioning: Focus on flies and worms. Trends Cell Biol 2002 ; 12 : 332-9.
- 61. Elinson RP, Houliston E. Cytoskeleton in Xenopus oocytes and eggs. Sem Cell Biol 1990 ; 1 : 349-57.
- 62. Marrari Y, Terasaki M, Arrowsmith V, Houliston E. Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 2000 ; 224 : 250-62.
- 63. Miller JR, Rowning BA, Larabell CA, et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 1999 ; 146 : 427-37.
- 64. Larabell CA, Torres M, Rowning BA, et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 1997; 136 : 1123-36.
- 65. Beckhelling C, Perez-Mongiovi D, Houliston E. Localised MPF regulation in eggs. Biol Cell 2000 ; 92 : 245-53.
- 66. Perez-Mongiovi D, Beckhelling C, Chang P, et al. E. Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts. J Cell Biol 2000 ; 150 : 963-74.
- 67. Marikawa Y, Elinson RP. Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 1999 ; 89 : 93-102.
- 68. Nishida H. Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol 1997 ; 176 : 245-306.
- 69. Nishida H, Sawada K. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 2001 ; 409 : 724-9.
- 70. Takamura K, Fujimura M, Yamaguchi Y. Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 2002 ; 212 : 11-8.
- 71. Seydoux G, Schedl T. The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 2001 ; 203 : 139-85.
- 72. Goldstein B. When cells tell their neighbors which direction to divide. Dev Dyn 2000 ; 218 : 23-9.
- 73. Labouesse M, Mango SE. Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet 1999 ; 15 : 307-13.
- 74. Horstadius S. Experimental embryology of echinoderms. London: Clarendon Press, 1973
- 75. Boveri T. Über die polarität des seeigeleies. Ver der Phys Med Ges zu Wuerzburg 1901 ; 34 : 145-75.
- 76. Coffman JA, Davidson EH. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 2001 ; 230 : 18-28.
- 77. Henry JJ, Raff RA. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 1990 ; 141 : 55-69.
- 78. Gross JM, Peterson RE, Wu SY, McClay DR. LvTbx2/3: A T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 2003 ; 130 : 1989-99.
- 79. Schroeder TE. Expressions of the prefertilization polar axis in sea urchin eggs. Dev Biol 1980 ; 79 : 428-43.
- 80. Sardet C, Chang P. A marker of animal-vegetal polarity in the egg of the sea urchin Paracentrotus lividus. The pigment band. Exp Cell Res 1985 ; 160 : 73-82.
- 81. Angerer LM, Angerer RC. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 2000 ; 218 : 1-2.
- 82. Brandhorst BP, Klein WH. Molecular patterning along the sea urchin animal-vegetal axis. Int Rev Cytol 2002 ; 213 : 183-232.
- 83. Emily-Fenouil F, Ghiglione C, Lhomond G, et al. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 1998 ; 125 : 2489-98.
- 84. McClay DR, Peterson RE, Range RC, et al. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 2000 ; 127 : 5113-22.
- 85. Sweet HC, Hodor PG, Ettensohn CA. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 1999 ; 126 : 5255-65.
- 86. Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell 1999 ; 96 : 195-209.
- 87. Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: Axis formation in the mouse embryo. Curr Opin Genet Dev 2001 ; 11 : 384-92.
- 88. Zernicka-Goetz M. Patterning of the embryo: The first spatial decisions in the life of a mouse. Development 2002 ; 129 : 815-29.
- 89. Weber RJ, Pedersen RA, Wianny F, et al. Polarity of the mouse embryo is anticipated before implantation. Development 1999 ; 126 : 5591-8.
- 90. Gardner RL. Polarity in early mammalian development. Curr Opin Genet Dev 1999 ; 9 : 417-21.
- 91. Ciemerych MA, Mesnard D, Zernicka-Goetz M. Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are non essential for development. Development 2000 ; 127 : 3467-74.
- 92. Piotrowska K, Zernicka-Goetz M. Early patterning of the mouse embryo. Contributions of sperm and egg. Development 2002 ; 129 : 5803-13.
- 93. Edwards RG. Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 2001 ; 3 : 138-60.
- 94. Piotrowska K, Zernicka-Goetz M. Role for sperm in spatial patterning of the early mouse embryo. Nature 2001 ; 409 : 517-21.
- 95. Johnson MH. Mammalian development: Axes in the egg ? Curr Biol 2001 ; 11 : R281-4.
- 96. Deguchi R, Shirakawa H, Oda S, et al. Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal-vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev Biol 2000 ; 218 : 299-313.
- 97. Ozil JP, Huneau D. Activation of rabbit oocytes: The impact of the Ca2+ signal regime on development. Development 2001 ; 128 : 917-28.
- 98. Huxley JS. Problems of relative growth. New York : Dial Press, 1932.
- 99. Chabry LM. Contribution à l’embryologie normale et tératologique des ascidies simples. J Anat Physiol Norm Pathol 1887 ; 23 : 167-321.
- 100. Driesch D. The potency of the first two cleavage cells in echinoderm development : Experimental production of partial and double formation. New York, Hafner, 1974 : 1892.