Abstracts
Résumé
Certains épithéliums présentent une polarité orientée perpendiculairement à l’axe de polarité apico-basale des cellules épithéliales. Les bases génétiques et moléculaires de cette polarité planaire ont été analysées depuis une vingtaine d’années chez la drosophile. Des travaux récents montrent que la mise en place de la polarité planaire repose sur la distribution unipolaire d’un petit nombre de molécules de signalisation au cortex apical des cellules épithéliales. La distribution unipolaire de ces molécules définit deux domaines corticaux, opposés et complémentaires, dont l’orientation stéréotypée confère une polarité à l’échelle du tissu. La coordination globale de l’orientation de ces domaines corticaux est assurée par une seconde classe de molécules de signalisation qui forment un gradient d’activité à l’échelle du tissu. La conservation - de la mouche aux vertébrés - des molécules de polarité planaire suggère une implication de ces molécules dans la biologie des épithéliums chez les mammifères.
Summary
Several epitheliums exhibit a clear polarity that lies within the plane of the epithelium. This polarity, referred to as planar polarity or tissue polarity, is oriented perpendicular to the apical-basal polarity of the epithelium. Over the last two decades, the genetic and molecular bases of planar polarity have been intensively investigated in Drosophila. Recent studies have shown that establishment of planar polarity relies on the unipolar distribution of a small number of signaling molecules localizing at the apical cortex. Unipolar localization of planar polarity proteins defines two opposite and complementary cortical domains. These domains show a stereotyped orientation at the tissue level. Positioning of these cortical domains is coordinated at the tissu level by a second class of signaling molecules that form an activity gradient across the epithelium. Together these data have led to a general model of planar polarity establishment. Considering that planar polarity genes have been conserved from flies to vertebrates, this model may be useful for our understanding of epithelium biology in mammals.
Appendices
Références
- 1. Adler PN. Planar signaling and morphogenesis in Drosophila. Dev Cell 2002 ; 2 : 525-35.
- 2. Strutt DI. The asymmetric subcellular localisation of components of the planar polarity pathway. Semin Cell Dev Biol 2002 ; 13 : 225-31.
- 3. Wong LL, Adler PN. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J Cell Biol 1993 ; 123 : 209-21.
- 4. Shulman JM, Perrimon N, Axelrod JD. Frizzled signaling and the developmental control of cell polarity. Trends Genet 1998 ; 14 : 452-8.
- 5. Jones KH, Liu J, Adler PN. Molecular analysis of EMS-induced frizzled mutations in Drosophila melanogaster. Genetics 1996 ; 142 : 205-15.
- 6. Adler PN, Taylor J, Charlton J. The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling. Mech Dev 2000 ; 96 : 197-207.
- 7. Adler PN, Krasnow RE, Liu J. Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr Biol 1997 ; 7 : 940-9.
- 8. Axelrod JD. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev 2001 ; 15 : 1182-7.
- 9. Shimada Y, Usui T, Yanagawa S, et al. Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. Curr Biol 2001 ; 11 : 859-63.
- 10. Strutt DI. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol Cell 2001 ; 7 : 367-75.
- 11. Bastock R, Strutt H, Strutt D. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 2003 ; 130 : 3007-14.
- 12. Tree DR, Shulman JM, Rousset R, et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 2002 ; 109 : 371-81.
- 13. Feiguin F, Hannus M, Mlodzik M, et al. The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev Cell 2001 ; 1 : 93-101.
- 14. Usui T, Shima Y, Shimada Y, et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999 ; 98 : 585-95.
- 15. Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 2001 ; 107 : 843-54.
- 16. Strutt DI, Weber U, Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 1997 ; 387 : 292-5.
- 17. Winter CG, Wang B, Ballew A, et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 2001 ; 105 : 81-91.
- 18. Meinhardt H. Orientation of chemotactic cells and growth cones : models and mechanisms. J Cell Sci 1999 ; 112 : 2867-74.
- 19. Strutt H, Strutt D. Polarity determination in the Drosophila eye. Curr Opin Genet Dev 1999 ; 9 : 442-6.
- 20. Fanto M, Mlodzik M. Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature 1999 ; 397 : 523-6.
- 21. Strutt D, Johnson R, Cooper K, et al. Asymmetric localization of Frizzled and the determination of Notch-dependent cell fate in the Drosophila eye. Curr Biol 2002 ; 12 : 813-24.
- 22. Cooper MT, Bray SJ. Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 1999 ; 397 : 526-30.
- 23. Yang CH, Axelrod JD, Simon MA. Regulation of Frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 2002 ; 108 : 675-88.
- 24. Zeidler MP, Perrimon N, Strutt DI. The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Curr Biol 1999 ; 9 : 1363-72.
- 25. Rawls AS, Guinto JB, Wolff T. The cadherins fat and dachsous regulate dorsal/ventral signaling in the Drosophila eye. Curr Biol 2002 ; 12 : 1021-6.
- 26. Casal J, Struhl G, Lawrence P. Developmental compartments and planar polarity in Drosophila. Curr Biol 2002 ; 12 : 1189.
- 27. Ma D, Yang CH, McNeill H, et al. Fidelity in planar cell polarity signalling. Nature 2003 ; 421 : 543-7.
- 28. Darken RS, Scola AM, Rakeman, AS, et al. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. Embo J 2002 ; 21 : 976-85.
- 29. Goto T, Keller R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 2002 ; 247 : 165-81.
- 30. Jessen JR, Topczewski J, Bingham S, et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 2002 ; 4 : 610-5.
- 31. Kibar Z, Vogan KJ, Groulx N, et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001 ; 28 : 251-5.
- 32. Myers D, Sepich D, Solnica-Krezel L. Convergence and extension in vertebrate gastrulae : cell movements according to or in search of identity ? Trends Genet 2002 ; 18 : 447.
- 33. Wallingford JB, Rowning BA, Vogeli KM, et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000 ; 405 : 81-5.
- 34. Wallingford JB, Goto T, Keller R, et al. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene. Mech Dev 2002 ; 116 : 183-6.
- 35. Wallingford JB, Fraser SE, Harland RM. Convergent extension : the molecular control of polarized cell movement during embryonic development. Dev Cell 2002 ; 2 : 695-706.
- 36. Curtin JA, Quint E, Tsipouri V, et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 2003 ; 13 : 1129-33.
- 37. Montcouquiol M, Rachel RA, Lanford PJ, et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003 ; 423 : 173-7.