Abstracts
Résumé
Le système rénine-angiotensine, l’un des principaux complexes de régulation de la pression sanguine, est distribué entre le sang circulant et l’espace péricellulaire de l’interstium tissulaire. Il participe en physiologie et en pathologie de la régulation de la vasomotricité et du remodelage tissulaire dans le système cardiovasculaire. Dans le cadre de ces effets, le système rénine-angiotensine tissulaire agit sur les cellules musculaires lisses vasculaires et les fibroblastes, tandis que le système rénine-angiotensine plasmatique a pour cibles les cellules endothéliales et les leucocytes circulants. L’angiotensine II, peptide actif du système, déclenche différentes voies de signalisation aboutissant à une réponse fonctionnelle immédiate (hypertension artérielle), puis à une réponse structurale hypertrophiante et, enfin, à des réponses pro-inflammatoires et procoagulantes. Dans des modèles expérimentaux d’athérosclérose, la perfusion d’angiotensine II induit la formation d’anévrismes, qui a été reliée à l’activation des leucocytes circulants. Des antagonistes de l’angiotensine II ont, dans ce type de modèle, un effet bénéfique sur le ralentissement de la formation des lésions d’athérosclérose.
Summary
The renin-angiotensin system (RAS) is compartmented between circulating blood and tissue pericellular space. Whereas renin and its substrate diffuse easily from one compartment to another, the angiotensin peptides act in the compartment where there are generated: blood or pericellular space. Renin is trapped in tissues by low and high affinity receptors. In the target cells, angiotensin II/AT1 receptor interaction generates different signals including an immediate functional calcium-dependent response, secondary hypertrophy and a late proinflammatory and procoagulant response. These late pathological effects are mediated by NADPH oxydase-generated free oxygen radicals and NFκB activation. In vivo, the tissue binding of renin and the induction of converting enzyme are the main determinants of the involvement of the RAS in vascular remodeling. The target cells of interstitial angiotensin II are mainly the vascular smooth muscle cells and fibroblasts, whereas the endothelial cells and circulating leukocytes are the main targets of circulating angiotensin II. In vivo, angiotensin II participates in the vascular wall hypertrophy associated with hypertension. In diabetes, as in other localized fibrotic cardiovascular diseases, the tissue effects of angiotensin II are mainly dependent on its ability to induce TGF-β expression. In experimental atherosclerosis, angiotensin II infusion induces aneurysm formation mediated by activation of circulating leucocytes. In these models, the administration of angiotensin II antagonists has beneficial effects on pathological remodeling. Such beneficial effects of angiotensin II antagonists in localized pathological remodeling have not yet been demonstrated in humans.
Appendices
Références
- 1. Goldblatt H. The renal origin of hypertension. Physiol Rev 1947 ; 27 : 120-65.
- 2. van Kesteren CA, Danser AH, Derkx FH, et al. Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. Hypertension 1997 ; 30 : 1389-96.
- 3. de Lannoy LM, Danser AH, van Kats JP, et al. Renin-angiotensin system components in the interstitial fluid of the isolated perfused rat heart. Local production of angiotensin I. Hypertension 1997 ; 29 : 1240-51.
- 4. Nguyen G, Delarue F, Burckle C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002 ; 109 : 1417-27.
- 5. Coulet F, Gonzalez W, Boixel C, et al. Endothelium-independent conversion of angiotensin I by vascular smooth muscle cells. Cell Tissue Res 2001 ; 303 : 227-34.
- 6. Levy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation 2004 ; 109 : 8-13.
- 7. Pueyo ME, N’Diaye N, Michel JB. Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br J Pharmacol 1996 ; 118 : 79-84.
- 8. Berk BC, Corson MA. Angiotensin II signal transduction in vascular smooth muscle : role of tyrosine kinases. Circ Res 1997 ; 80 : 607-16.
- 9. Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin II induces human TGF-beta 1 promoter activation : similarity to hyperglycaemia. Diabetologia 2002 ; 45 : 890-8.
- 10. Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000 ; 91 : 21-7.
- 11. Pagano PJ, Chanock SJ, Siwik DA, et al. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 1998 ; 32 : 331-7.
- 12. Kranzhofer R, Schmidt J, Pfeiffer CA, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999 ; 19 : 1623-9.
- 13. Brown NJ, Vaughan DE. Prothrombotic effects of angiotensin. Adv Intern Med 2000 ; 45 : 419-29.
- 14. Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000 ; 20 : 645-51.
- 15. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts : response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994 ; 26 : 809-20.
- 16. Brown NJ, Kumar S, Painter CA, Vaughan DE. ACE inhibition versus angiotensin type 1 receptor antagonism : differential effects on PAI-1 over time. Hypertension 2002 ; 40 : 859-65.
- 17. Henrion D, Dowell FJ, Levy BI, Michel JB. In vitro alteration of aortic vascular reactivity in hypertension induced by chronic NG-nitro-L-arginine methyl ester. Hypertension 1996 ; 28 : 361-6.
- 18. Pagano PJ, Clark JK, Cifuentes-Pagano ME, et al. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia : enhancement by angiotensin II. Proc Natl Acad Sci USA 1997 ; 94 : 14483-8.
- 19. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001 ; 345 : 851-60.
- 20. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001 ; 345 : 870-8.
- 21. Marre M, Jeunemaitre X, Gallois Y, et al. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes : génétique de la néphropathie diabétique (GENEDIAB) study group. J Clin Invest 1997 ; 99 : 1585-95.
- 22. Pueyo ME, Challah, M, Gaugier, D, et al. TGF-?1 production is correlated with genetically determined angiotensin-converting enzyme expression in congenic rats. Diabetes 2004 (sous presse).
- 23. Yamada H, Fabris B, Allen AM, et al. Localization of angiotensin converting enzyme in rat heart. Circ Res 1991 ; 68 : 141-9.
- 24. Brien KD, Shavelle DM, Caulfield MT, et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 2002 ; 106 : 2224-30.
- 25. Johnston CI, Mooser V, Sun Y, Fabris B. Changes in cardiac angiotensin converting enzyme after myocardial infarction and hypertrophy in rats. Clin Exp Pharmacol Physiol 1991 ; 18 : 107-10.
- 26. Gaertner R, Prunier F, Philippe M, et al. Scar and pulmonary expression and shedding of ACE in rat myocardial infarction. Am J Physiol Heart Circ Physiol 2002 ; 283 : H156-64.
- 27. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 1998 ; 30 : 1559-69.
- 28. Challah M, Villard E, Philippe M, et al. Angiotensin I-converting enzyme genotype influences arterial response to injury in normotensive rats. Arterioscler Thromb Vasc Biol 1998 ; 18 : 235-43.
- 29. Amant C, Bauters C, Bodart JC, et al. Dallele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997 ; 96 : 56-60.
- 30. Paragh G, Szabo J, Kovacs E, et al. Altered signal pathway in angiotensin II-stimulated neutrophils of patients with hypercholesterolaemia. Cell Signal 2002 ; 14 : 787-92.
- 31. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000 ; 105 : 1605-12.
- 32. Wang YX, Martin-McNulty B, Freay AD, et al. Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol 2001 ; 159 : 1455-64.
- 33. Manning MW, Cassi LA, Huang J, et al A. Abdominal aortic aneurysms : fresh insights from a novel animal model of the disease. Vasc Med 2002 ; 7 : 45-54.
- 34. Dol F, Martin G, Staels B, et al. Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2001 ; 38 : 395-405.
- 35. Menard J, Campbell DJ, Azizi M, Gonzales MF. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation 1997 ; 96 : 3072-8.