Abstracts
Résumé
Dans les bactéries à Gram négatif, les porines bactériennes sont une des voies principales d’entrée pour les antibiotiques usuels comme les β-lactamines et les fluoroquinolones. L’expression de ces protéines, ainsi que les interactions et les acides aminés qui organisent la diffusion dans le pore sont des éléments majeurs de la perméabilité membranaire. Ainsi, plusieurs isolats cliniques de bactéries résistantes présentant des défauts de porines ou exprimant des porines modifiées ont été décrits. Les caractérisations de divers répresseurs ou activateurs de la synthèse des porines, mais aussi de molécules pouvant moduler leur activité «canal», ont montré la complexité et la flexibilité des facteurs contrôlant l’expression fonctionnelle de ces protéines. Cet article illustre notamment comment la régulation de l’expression des porines et les mécanismes qui organisent la diffusion des solutés peuvent être des paramètres-clés de la résistance bactérienne aux antibiotiques.
Summary
In Gram negative bacteria, hydrophilic antibiotics such as β-lactams and fluoroquinolons used the bacterial porin channel during their entry. The balance of the porin expression level and the molecular parameters which govern the molecule diffusion through the pore are important physiological points. Acquired in vivo β-lactam resistance is often associated with porin loss, and recently clinical resistant strains synthetizing mutated porin have been described. These data highlight both the importance of the channel characteristics and the aminoacid residues involved in the drug diffusion process. In addition, several mechanisms, including various repressors or activators as well as molecules inhibiting the pore synthesis or activity, argue for the complexity and plasticity of the bacterial control of porin function. All these aspects play a key role in both membrane permeability and efficiency of the antibiotic resistance process.
Appendices
Références
- 1. Nikaido H. Outer membrane. In: Neidhardt FC, ed. Escherichia coli and Salmonella: cellular andmolecular biology. Washington DC: ASM Press, 1996: 29-47.
- 2. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994; 264: 382-8.
- 3. Hancock REW. The bacterial outer membrane as a drug barrier. Trends Microbiol 1997; 5: 37-42.
- 4. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 2000; 37: 239-53.
- 5. Schirmer T. General and specific porins from bacterial outer membranes. J StructBiol 1998; 121: 101-9.
- 6. Zeth K, Diederichs K, Welte W, Engelhardt H. Crystal structure of Omp32, the anionselective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure Fold Des 2000; 8: 981-92.
- 7. Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two E.coli porins. Nature 1992; 358: 727-33.
- 8. Dutzler R, Rummel G, Alberti S, et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure Fold Des 1999; 7: 425-34.
- 9. Weiss MS, Kreusch A, Schiltz E, et al. The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 1991; 280: 379-82.
- 10. Kreusch A, Neubüser A, Schiltz E, et al. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci 1994; 3: 58-63.
- 11. Zimmermann W, Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 1977; 12: 368-72.
- 12. Tokunaga M, Tokunaga H, Nakae T. The outer membrane permeability of Gram-negative bacteria. Determination of permeability rate in reconstituted membrane vesicles. FEBS Lett 1979; 106: 85-8.
- 13. Nikaido H, Rosenberg EY. Porin channels in Escherichia coli. Studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153: 241-52.
- 14. Montal M, Müller P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc Natl Acad Sci USA 1972; 69: 3561-6.
- 15. Schindler H, Rosenbusch JP. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci USA 1978; 75: 3751-5.
- 16. Delcour AH, Martinac B, Kung C, Adler J. A modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 1989; 56: 631-6.
- 17. DelaVega AL, Delcour AH. Cadaverine induces closing of E. coli porins. EMBO J 1995; 14: 6058-65.
- 18. Iyer R, Delcour AH. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem 1997; 272: 18595-601.
- 19. Chevalier J, Mallea M, Pagès JM. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 2000; 348: 223-7.
- 20. Saint N, Lou KL, Widmer C, et al. Structural and functional characterization of OmpF porin mutants selected for larger pore size. Functional characterization. J Biol Chem 1996; 271: 20676-80.
- 21. Van Gelder P, Saint N, Phale P, et al. Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. J Mol Biol 1997; 269: 468-72.
- 22. Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44: 311-15.
- 23. Jeanteur D, Schirmer T, Fourel D, et al. Structural and functional alterations of a colicin resistant mutant of OmpF from E. coli. Proc Natl Acad Sci USA 1994; 91: 10675-9.
- 24. Bredin J, Saint N, Malléa M, et al. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop3 region. Biochem J 2002; 363: 521-8.
- 25. Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic aminoacids and peptides. J Biol Chem 1990; 265: 15680-4.
- 26. Karshikoff A, Spassov V, Cowan SA, et al. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol 1994; 240: 372-84.
- 27. Jeanteur D, Lakey JH, Pattus F. The bacterial porin superfamily: Sequence alignment and structure prediction. Mol Microbiol 1991; 5: 2153-64.
- 28. Iyer R, Wu Z, Woster PM, Delcour AH. Molecular basis for the polyamine-OmpF porin interactions: inhibitor and mutant studies. J Mol Biol 2000; 297: 933-45.
- 29. Dé E, Basle A, Jaquinod M, et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. MolMicrobiol 2001; 41: 189-98.
- 30. Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 2002; 184: 5619-24.
- 31. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J Bacteriol 1999; 181: 2726-32.
- 32. Phale PS, Schirmer T, Prilipov A, et al. Voltage gating of Escherichia coli porin channels: role of the constriction loop. Proc Natl Acad Sci USA 1997; 94: 6741-5.
- 33. Eppens EF, Saint N, van Gelder P, et al. Role of the constriction loop in the gating of outer membrane porin PhoE of Escherichia coli. FEBS Lett 1997; 415: 317-20.
- 34. DelaVega AL, Delcour AH. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol 1996; 178: 3715-21.
- 35. Samartzidou H, Delcour AH. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 1999; 181: 791-8.
- 36. Nestorovich EK, Danelon C, Winterhalter M, Bezrukov SM. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA 2002; 99: 9789-94.
- 37. Bornet C, Davin-Regli A, Bosi C, et al. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane impermeability. J Clin Microbiol 2000; 38: 1048-52.
- 38. Delihas N, Frost S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313: 1-12.
- 39. Aleskun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7: 410-3.
- 40. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. From acids to osmZ: multiple factors influence synthesis of OmpF and OmpC porins in Escherichia coli. MolMicrobiol 1996; 20: 911–7.
- 41. Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42: 619-30.
- 42. Vidal S, Brouant P, Chevalier J, et al. Computer simulation of spermine-porin channel interactions. In Vivo 2002; 16: 111-6.
- 43. Bredin J, Simonet V, Iyer R, et al. Colicins, spermine and cephalosporins: a competitive interaction with the OmpF eyelet. Biochem J 2003; 376: 245-52.