Abstracts
Résumé
Les endothélines, ET-1, ET-2 et ET-3 sont trois peptides de 21 acides aminés, qui ont été découverts au travers de leurs puissants effets vasoconstricteurs. Les précurseurs des endothélines sont clivés en peptides actifs par l’enzyme de conversion de l’endothéline. Deux récepteurs, ET-A et ET-B, constitués de sept domaines transmembranaires ont été clonés chez les mammifères. Le développement d’agonistes et d’antagonistes sélectifs des deux types de récepteurs et l’élaboration de modèles animaux génétiquement modifiés ont permis de montrer que le système endothéline n’était pas seulement important dans le domaine cardiovasculaire. Chez les mammifères, ce système est essentiel pour le développement embryonnaire et néonatal, et joue un rôle dans l’homéostasie rénale, le maintien du tonus vasculaire, la réparation du tissu cardiaque, l’angiogenèse et la régulation de la respiration. Mais le système endothéline est aussi impliqué de manière délétère dans l’athérosclérose, le remodelage cardiaque et l’hypertension pulmonaire.
Summary
Endothelins are a family of three peptides of 21 amino acids with strong vasoconstrictor effects. The three peptides are encoded by three different genes and derived from precursors (« big endothelins ») which are cleaved by metalloproteases, named endothelin-converting enzyme. Two receptors have been cloned, ET-A and ET-B which bind the three endothelins with various affinities. The diverse expression pattern of the endothelin system (ET) components is associated with a complex pharmacology and its counteracting physiological actions. New modulators of the ET system have been described : retinoic acid, leptin, prostaglandins, hypoxia. Endothelins can be considered as regulators working in paracrine and autocrine fashion in a variety of organs in different cellular types. The ET system has beneficial and detrimental roles in mammals. The different components have been shown to be essential for a normal embryonic and neonatal development, for renal homeostasis and maintenance of basal vascular tone. They are involved in physiological and tumoral angiogenesis. They affect the physiology and pathophysiology of the liver, muscle, skin, adipose tissue and reproductive tract. The endothelin system participates in the development of atherosclerosis as well as pulmonary hypertension, and mediates cardiac remodeling in heart failure. Elaboration of new animal models (knock-out, pathophysiological models…) will allow the clear genetic dissection of physiological and pathophysiological roles of the endothelin system.
Appendices
Références
- 1. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988 ; 332 : 411-5.
- 2. Miyauchi T, Masaki T. Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol 1999 ; 61 : 391-415.
- 3. Hooper NM. Families of zinc metalloproteases. FEBS Lett 1994 ; 354 : 1-6.
- 4. Xu D, Emoto N, Giaid A, et al. ECE-1 : a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 1994 ; 78 : 473-85.
- 5. Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem 1995 ; 270 : 15262-8.
- 6. Korth P, Bohle RM, Corvol P, Pinet F. Cellular distribution of endothelin-converting enzyme-1 in human tissues. J Histochem Cytochem 1999 ; 47 : 447-62.
- 7. Parnot C, Le Moullec JM, Cousin MA, et al. A live-cell assay for studying extracellular and intracellular endothelin-converting enzyme activity. Hypertension 1997 ; 30 : 837-44.
- 8. Yanagisawa H, Hammer RE, Richardson JA, et al. Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 2000 ; 105 : 1373-82.
- 9. Valdenaire O, Lepailleur-Enouf D, Egidy G, et al. A fourth isoform of endothelin-converting enzyme (ECE-1) is generated from an additional promoter molecular cloning and characterization. Eur J Biochem 1999 ; 264 : 341-9.
- 10. Valdenaire O, Barret A, Schweizer A, et al. Two di-leucine-based motifs account for the different subcellular localizations of the human endothelin-converting enzyme (ECE-1) isoforms. J Cell Sci 1999 ; 112 : 3115-25.
- 11. Johnson GD, Stevenson T, Ahn K. Hydrolysis of peptide hormones by endothelin-converting enzyme-1. A comparison with neprilysin. J Biol Chem 1999 ; 274 : 4053-8.
- 12. Kedzierski RM, Yanagisawa M. Endothelin system : the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 2001 ; 41 : 851-76.
- 13. Egidy G, Baviera E, Ciuffo G, et al. Localization of the endothelin system in aldosterone-producing adenomas. Hypertension 2001 ; 38 : 1137-42.
- 14. Yokota J, Kawana M, Hidai C, et al. Retinoic acid suppresses endothelin-1 gene expression at the transcription level in endothelial cells. Atherosclerosis 2001 ; 159 : 491-6.
- 15. Wright MF, Sayre B, Keith Inskeep EK, Flores JA. Prostaglandin F(2alpha) regulation of the bovine corpus luteum endothelin system during the early and midluteal phase. Biol Reprod 2001 ; 65 : 1710-7.
- 16. Quehenberger P, Exner M, Sunder-Plassmann R, et al. Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 2002 ; 90 : 711-8.
- 17. Hasselblatt M, Lewczuk P, Loffler BM, et al. Role of the astrocytic ET(B) receptor in the regulation of extracellular endothelin-1 during hypoxia. Glia 2001 ; 34 : 18-26.
- 18. Yamashita K, Discher DJ, Hu J, et al. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J Biol Chem 2001 ; 276 : 12645-53.
- 19. Aitsebaomo J, Kingsley-Kallesen ML, Wu Y, et al. Vezf1/DB1 is an endothelial cell-specific transcription factor that regulates expression of the endothelin-1 promoter. J Biol Chem 2001 ; 276 : 39197-205.
- 20. Kurihara Y, Kurihara H, Oda H, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 1995 ; 96 : 293-300.
- 21. Yanagisawa H, Yanagisawa M, Kapur RP, et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998 ; 125 : 825-36.
- 22. Clouthier DE, Williams SC, Yanagisawa H, et al. Signaling pathways crucial for craniofacial development revealed by endothelin-A receptor-deficient mice. Dev Biol 2000 ; 217 : 10-24.
- 23. Baynash AG, Hosoda K, Giaid A, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994 ; 79 : 1277-85.
- 24. Hachiya A, Kobayashi T, Takema Y, Imokawa G. Biochemical characterization of endothelin-converting enzyme-1alpha in cultured skin-derived cells and its postulated role in the stimulation of melanogenesis in human epidermis. J Biol Chem 2002 ; 277 : 5395-403.
- 25. Kempf H, Linares C, Corvol P, Gasc JM. Pharmacological inactivation of the endothelin type A receptor in the early chick embryo : a model of mispatterning of the branchial arch derivatives. Development 1998 ; 125 : 4931-41.
- 26. Laghmani K, Preisig PA, Moe OW, et al. Endothelin-1/endothelin-B receptor-mediated increases in NHE3 activity in chronic metabolic acidosis. J Clin Invest 2001 ; 107 : 1563-9.
- 27. Peng Y, Amemiya M, Yang X, et al. ET(B) receptor activation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Renal Physiol 2001 ; 280 : F34-42.
- 28. Ivy D, McMurtry IF, Yanagisawa M, et al. Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 2001 ; 280 : L1040-8.
- 29. Cruz A, Parnot C, Ribatti D, et al. Endothelin-1, a regulator of angiogenesis in the chick chorioallantoic membrane. J Vasc Res 2001 ; 38 : 536-45.
- 30. Iglarz M, Silvestre JS, Duriez M, et al. Chronic blockade of endothelin receptors improves ischemia-induced angiogenesis in rat hindlimbs through activation of vascular endothelial growth factor-no pathway. Arterioscler Thromb Vasc Biol 2001 ; 21 : 1598-603.
- 31. Miceli F, Minici F, Garcia PM, et al. Endothelins enhance prostaglandin (PGE2 and PGF2alpha) biosynthesis and release by human luteal cells : evidence of a new paracrine/autocrine regulation of luteal function. J Clin Endocrinol Metab 2001 ; 86 : 811-7.
- 32. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens 2001 ; 14 : 83S-9.
- 33. Tiret L, Poirier O, Hallet V, et al. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 1999 ; 33 : 1169-74.
- 34. Iglarz M, Benessiano J, Philip I, et al. Preproendothelin-1 gene polymorphism is related to a change in vascular reactivity in the human mammary artery in vitro. Hypertension 2002 ; 39 : 209-13.
- 35. Boulanger CM, Tanner FC, Bea ML, et al. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res 1992 ; 70 : 1191-7.
- 36. Martin-Nizard F, Houssaini HS, Lestavel-Delattre S, et al. Modified low density lipoproteins activate human macrophages to secrete immunoreactive endothelin. FEBS Lett 1991 ; 293 : 127-30.
- 37. Haug C, Schmid-Kotsas A, Zorn U, et al. Endothelin-1 synthesis and endothelin B receptor expression in human coronary artery smooth muscle cells and monocyte-derived macrophages is up-regulated by low density lipoproteins. J Mol Cell Cardiol 2001 ; 33 : 1701-12.
- 38. Ihling C, Szombathy T, Bohrmann B, et al. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Circulation 2001 ; 104 : 864-9.
- 39. Folkman J. Tumor angiogenesis : therapeutic implications. N Engl J Med 1971 ; 285 : 1182-6.
- 40. Egidy G, Juillerat-Jeanneret L, Jeannin JF, et al. Modulation of human colon tumor-stromal interactions by the endothelin system. Am J Pathol 2000 ; 157 : 1863-74.
- 41. Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer’s amyloid beta peptide by endothelin-converting enzyme. J Biol Chem 2001 ; 276 : 24540-8.