Abstracts
Résumé
La recombinaison entre chromosomes homologues est un processus essentiel dont le rôle mécanique est d’assurer la ségrégation réductionnelle des chromosomes lors de la première division de méiose. La protéine Spo11 est responsable du déclenchement de la recombinaison méiotique par formation de cassures double-brin de l’ADN, et cette activité est apparentée à celle des ADN topo-isomérases de type II. Spo11 et sa fonction ont été conservées au cours de l’évolution, de la levure à l’homme: chez tous les eucaryotes testés, les mutants spo11 sont déficients pour la recombinaison méiotique et ont une fertilité réduite, voire nulle. Cette stérilité reflète selon les cas un dysfonctionnement de la ségrégation des chromosomes ou un arrêt de la différenciation germinale. L’étude phénotypique des différents mutants met en évidence un ensemble de régulations complexes entre la recombinaison et d’autres événements de la prophase de méiose, tels que l’appariement des chromosomes et le contrôle du cycle cellulaire méiotique.
Summary
Recombination between homologous chromosomes during meiosis is an essential process, which mechanistical function is to ensure the reductional segregation of chromosomes at the first meiotic division. SPO11, one of the key genes directly involved in this process, has been at the origin of considerable interest for the past five years, for several reasons. First, Spo11 is responsible for the initiation of meiotic recombination through the formation of DNA double-strand breaks by a type II DNA topoisomerase-like activity. Moreover, Spo11, and its function, have been conserved through evolution, from yeasts to human, as demonstrated by the identification of members of the Spo11 protein family and the analyses of corresponding mutants. Indeed, for every eukaryote that has been tested, spo11 mutants are deficient for meiotic recombination and are partially or completely sterile. Depending on the species, this reduced fertility reflects either a defect in chromosome segregation, or an arrest response in germ cell differentiation. Similarities and differences from species to species uncover a complex set of regulations that coordinate recombination with other events of meiotic prophase, such as chromosome pairing and meiotic cell cycle.
Appendices
Références
- 1. Smith KN, Nicolas A. Recombination at work for meiosis. Curr Opin Genet Dev 1998; 8: 200-11.
- 2. Klapholz S, Waddell CS, Esposito RE. The role of the SP011 in meiotic recombination in yeast. Genetics 1985; 110: 187-216.
- 3. Cao L, Alani E, Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 1990; 61: 1089-101.
- 4. Alani E, Padmore R, Kleckner N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 1990; 61: 419-36.
- 5. Liu J, Wu TC, Lichten M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. Embo J 1995; 14: 4599-608.
- 6. Keeney S, Kleckner N.∈Covalent protein-DNA complexes at the 5’ strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA 1995; 92: 11274-8.
- 7. De Massy B, Rocco V, Nicolas A. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. Embo J 1995; 14: 4589-98.
- 8. Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 1997; 386: 414-7.
- 9. Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 1997; 88: 375-84.
- 10. Nichols MD, DeAngelis K, Keck JL, Berger JM. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. Embo J 1999; 18: 6177-88.
- 11. Keeney S. Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 2001; 52: 1-53.
- 12. Lichten M. Meiotic recombination: breaking the genome to save it. Curr Biol 2001; 11: R253-6.
- 13. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking spo11. Mol Cell 2000; 6: 989-98.
- 14. Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME. Multiple roles of spo11 in meiotic chromosome behavior. Embo J 2000; 19: 2739-50.
- 15. Cervantes MD, Farah JA, Smith GR. Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 2000; 5: 883-8.
- 16. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 1998; 94: 387-98.
- 17. Grelon M, Vezon D, Gendrot G, Pelletier G. AtSPO11-1 is necessary for efficient meiotic recombination in plants. Embo J 2001; 20: 589-600.
- 18. McKim KS, Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 1998; 12: 2932-42.
- 19. Lin Y, Smith GR. Transient, meiosis-induced expression of the rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics 1994; 136: 769-79.
- 20. Storlazzi A, Tesse S, Gargano S, James F, Kleckner N, Zickler D. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 2003; 16: 16.
- 21. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 2002; 115: 1611-22.
- 22. Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet 1999; 33: 603-754.
- 23. McKim KS, Green-Marroquin BL, Sekelsky JJ, et al. Meiotic synapsis in the absence of recombination. Science 1998; 279: 876-8.
- 24. Buhler C, Lebbink JH, Bocs C, Ladenstein R, Forterre P. DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J Biol Chem 2001; 276: 37215-22.
- 25. Hartung F, Puchta H. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene 2001; 271: 81-6.
- 26. Kee K, Keeney S. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae.Genetics 2002; 160: 111-22.
- 27. Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623-7.
- 28. Petes TD. Meiotic recombination hot spots and cold spots. Nat Rev Genet 2001; 2: 360-9.
- 29. Peciña A, Smith KN, Mezard C, Murakami H, Ohta K, Nicolas A. Targeted stimulation of meiotic recombination. Cell 2002; 111: 173-84.
- 30. Borde V, Goldman AS, Lichten M. Direct coupling between meiotic DNA replication and recombination initiation. Science 2000; 290: 806-9.
- 31. Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N. Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev 2000; 14: 493-503.
- 32. Romanienko PJ, Camerini-Otero RD. The mouse spo11 gene is required for meiotic chromosome synapsis. Mol Cell 2000; 6: 975-87.