Abstracts
Résumé
De l’oeil de drosophile au muscle de souris, l’histoire des gènes Six est intimement liée à celle des gènes Pax, Eya et Dach. Le premier membre de la famille, cloné chez la drosophile, a été baptisé sine oculis en raison de son rôle dans le développement oculaire, au cours duquel il agit en synergie avec les gènes eyeless (famille Pax), eyes absent (famille Eya) et dachshund (famille Dach). Des résultats récents semblent indiquer que les mécanismes décrits chez la drosophile ont été conservés au cours de l’évolution, pour la différenciation de l’oeil de vertébré, comme pour d’autres types de différenciation : Six1, notamment, semble être un acteur majeur de la myogenèse et participe au développement d’organes tels que les reins, le thymus ou l’oreille interne. Ces différentes fonctions sont à corréler avec la présence de partenaires Pax, Eya et Dach spécifiques dans les nombreux territoires d’expression du gène ; elles soulignent également l’importance de ces combinaisons de facteurs pendant l’organogenèse.
Summary
It has become clear that during evolution, efficient molecular mechanisms are used over and over again to achieve various patterning tasks. The Six gene story illustrates a new aspect of the molecular conservation during embryogenesis. Members of the Six gene family have been identified on the basis of sequence homology with Drosophilasine oculis gene, which acts within a network of genes including eyeless (Pax family), eyes absent (Eya family) and dachshund (Dach family) to trigger compound eye organogenesis. Some aspects of the regulatory complex operating in Drosophila appear to be conserved during vertebrate eye patterning, but also for other differentiation processes. In this regard, Six1 is required nonetheless during myogenesis, but also for kidney, thymus, inner ear, nose, lacrimal and salivary gland organogenesis. These phenotypes are reminiscent of those previously described for Eya and Pax mutants, suggesting a functional link between these factors during mammalian organogenesis.
Appendices
Références
- 1. Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genes. Sructure and function as transcription factors and their roles in development. Bioessays 2000 ; 22 : 616-26.
- 2. Ford HL, Kabingu EN, Bump EA, et al. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci USA 1998 ; 95 : 12608-13.
- 3. Li CM, Guo M, Borczuk A, et al. Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 2002 ; 160 : 2181-90.
- 4. Yu Y, Khan J, Khanna C, et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 2004 ; 4 : 4.
- 5. Cheyette BN, Green PJ, Martin K, et al. The Drosophilasine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 1994 ; 12 : 977-96.
- 6. Serikaku MA, O’Tousa JE. Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 1994 ; 138 : 1137-50.
- 7. Halder G, Callaerts P, Flister S, et al. Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 1998 ; 125 : 2181-91.
- 8. Bonini NM, Bui QT, Gray-Board GL, Warrick JM. The Drosophilaeyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 1997 ; 124 : 4819-26.
- 9. Shen W, Mardon G. Ectopic eye development in Drosophila induced by directed dachshund expression. Development 1997 ; 124 : 45-52.
- 10. Pignoni F, Hu B, Zavitz KH, et al. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 1997 ; 91 : 881-91.
- 11. Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 2000 ; 127 : 1879-86.
- 12. Kirby RJ, Hamilton GM, Finnegan DJ, et al.Drosophila homolog of the myotonic dystrophy-associated gene, SIX5, is required for muscle and gonad development. Curr Biol 2001 ; 11 : 1044-9.
- 13. Kobayashi M, Toyama R, Takeda H, et al. Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 1998 ; 125 : 2973-82.
- 14. Loosli F, Winkler S, Wittbrodt J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev 1999 ; 13 : 649-54.
- 15. Lagutin O, Zhu C, Kobayashi D, et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 2003 ; 17 : 368-79.
- 16. Li X, Perissi V, Liu F, et al. Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 2002 ; 297 : 1180-3.
- 17. Backman M, Machon O, Van Den Bout CJ, Krauss S. Targeted disruption of mouse Dach1 results in postnatal lethality. Dev Dyn 2003 ; 226 : 139-44.
- 18. Davis RJ, Shen W, Sandler YI, et al. Dach1 mutant mice bear no gross abnormalities in eye, limb, and brain development and exhibit postnatal lethality. Mol Cell Biol 2001 ; 21 : 1484-90.
- 19. Esteve P, Bovolenta P. cSix4, a member of the six gene family of transcription factors, is expressed during placode and somite development. Mech Dev 1999 ; 85 : 161-5.
- 20. Ozaki H, Watanabe Y, Takahashi K, et al. Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol Cell Biol 2001 ; 21 : 3343-50.
- 21. Klesert TR, Cho DH, Clark JI, et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat Genet 2000 ; 25 : 105-9.
- 22. Sarkar PS, Appukuttan B, Han J, et al. Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat Genet 2000 ; 25 : 110-4.
- 23. Oliver G, Wehr R, Jenkins N, et al. Homeobox genes and connective tissue patterning. Development 1995 ; 121 : 693-705.
- 24. Pandur PD, Moody SA. Xenopus Six1 gene is expressed in neurogenic cranial placodes and maintained in the differentiating lateral lines. Mech Dev 2000 ; 96 : 253-7.
- 25. Ghanbari H, Seo HC, Fjose A, Brandli AW. Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Dev 2001 ; 101 : 271-7.
- 26. Laclef C, Hamard G, Demignon J, et al. Altered myogenesis in Six1-deficient mice. Development 2003 ; 130 : 2239-52.
- 27. Laclef C, Souil E, Demignon J, Maire P . Thymus, kidney and craniofacial abnormalities in Six1 deficient mice. Mech Dev 2003 ; 120 : 669-79.
- 28. Xu PX, Zheng W, Huang L, et al. Six1 is required for the early organogenesis of mammalian kidney. Development 2003 ; 130 : 3085-94.
- 29. Zheng W, Huang L, Wei ZB, et al. The role of Six1 in mammalian auditory system development. Development 2003 ; 130 : 3989-4000.
- 30. Ozaki H, Nakamura K, Funahashi J, et al.Six1 controls patterning of the mouse otic vesicle. Development 2004 ; 131 : 551-62.
- 31. Xu PX, Adams J, Peters H, et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 1999 ; 23 : 113-7.
- 32. Xu PX, Zheng W, Laclef C, et al. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 2002 ; 129 : 3033-44.
- 33. Heanue TA, Reshef R, Davis RJ, et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev 1999 ; 13 : 3231-43.
- 34. Spitz F, Demignon J, Porteu A, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci USA 1998 ; 95 : 14220-5.
- 35. Ohto H, Kamada S, Tago K, et al. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 1999 ; 19 : 6815-24.
- 36. Fan X, Brass LF, Poncz M, et al. The alpha subunits of Gz and Gi interact with the eyes absent transcription cofactor Eya2, preventing its interaction with the six class of homeodomain-containing proteins. J Biol Chem 2000 ; 275 : 32129-34.
- 37. Goulding M, Sterrer S, Fleming J, et al. Analysis of the Pax-3 gene in the mouse mutant splotch. Genomics 1993 ; 17 : 355-63.