Abstracts
Résumé
Le développement de cellules cancéreuses est depuis longtemps associé à des dérèglements de l’activité transcriptionnelle de nombreux gènes, mais aussi, plus récemment, à l’apparition d’anomalies d’épissage des ARN prémessagers. La contribution de ces anomalies d’épissage au développement de cellules tumorales, ainsi que le pouvoir tumorigène de certaines des isoformes protéiques qui en sont issues sont encore très peu explorés. Toutefois, depuis la découverte récente du couplage des deux mécanismes - transcription et épissage - des efforts de recherche ont permis de démontrer que des facteurs de transcription oncogéniques affectent aussi l’épissage des prémessagers. Ces observations suscitent des interrogations quant aux mécanismes d’action des oncogènes à activité transcriptionnelle et, à plus long terme, quant à la recherche de cibles cellulaires nouvelles à appréhender dans de futurs protocoles thérapeutiques anticancéreux.
Summary
Oncogene activity ranges from transduction signals to transcription factors. Altered expression of oncogenes, either by chromosomal translocation, proviral insertion or point mutations, can lead to tumor formation. More specifically, data accumulated through the last two decades have shown that disregulation of oncogenic transcription factors can interfere with regulatory cascades that control the growth, differentiation, and survival of normal cells. There is also evidence that alterations of oncogene activity are associated with pre-mRNA splicing defects. The insights gained from the pivotal role of RNA polymerase II in coupling transcription and splicing have instigated a new line of research regarding the possible role of oncogenic transcription factors in pre-mRNA splicing regulation. This review focuses on recent advances addressing this question. Understanding the impact of alterations in the expression and/or function of oncogenes have important prognostic implications that can guide the design of new therapeutic drugs to promote differentiation and/or apoptosis over cell proliferation.
Appendices
Références
- 1. Gisselbrecht S. Oncogenes and leukemia : history and perspectives. Med Sci (Paris) 2003 ; 19 : 201-10.
- 2. Boyd KE, Farnham PJ. Identification of target genes of oncogenic transcription factors. Proc Soc Exp Biol Med 1999 ; 222 : 9-28.
- 3. Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997 ; 278 : 1059-64.
- 4. Dittmer J, Nordheim A. Ets transcription factors and human disease. Biochim Biophys Acta 1998 ; 1377 : F1-11.
- 5. Galiana-Arnoux D, Lejeune F, Gesnel MC, et al. The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20. J Biol Chem 2003 ; 278 : 32943-53.
- 6. Caballero OL, de Souza SJ, Brentani RR, Simpson AJ. Alternative spliced transcripts as cancer markers. Dis Markers 2001 ; 17 : 67-75.
- 7. Knoop LL, Baker SJ. The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem 2000 ; 275 : 24865-71.
- 8. Poleev A, Hartmann A, Stamm S. A trans-acting factor, isolated by the three-hybrid system, that influences alternative splicing of the amyloid precursor protein minigene. Eur J Biochem 2000 ; 267 : 4002-10.
- 9. Yang L, Embree LJ, Hickstein DD. TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 2000 ; 20 : 3345-54.
- 10. Knoop LL, Baker SJ. EWS/FLI alters 5’-splice site selection. J Biol Chem 2001 ; 276 : 22317-22.
- 11. Yang L, Chansky HA, Hickstein DD. EWS.Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing. J Biol Chem 2000 ; 275 : 37612-8.
- 12. Chansky HA, Hu M, Hickstein DD, Yang L. Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res 2001 ; 61 : 3586-90.
- 13. Moreau-Gachelin F, Wendling F, Molina T, et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 1996 ; 16 : 2453-63.
- 14. Starck J, Doubeikovski A, Sarrazin S, et al. Spi-1/PU.1 is a positive regulator of the Fli-1 gene involved in inhibition of erythroid differentiation in friend erythroleukemic cell lines. Mol Cell Biol 1999 ; 19 : 121-35.
- 15. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis : an affair involving multiple partners. Oncogene 2002 ; 21 : 3368-76.
- 16. Hallier M, Tavitian A, Moreau-Gachelin F. The transcription factor Spi-1/PU.1 binds RNA and interferes with the RNA-binding protein p54nrb. J Biol Chem 1996 ; 271 : 11177-81.
- 17. Hallier M, Lerga A, Barnache S, et al. The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J Biol Chem 1998 ; 273 : 4838-42.
- 18. Deguillien M, Huang SC, Morinière M, et al. Multiple cis elements regulate an alternative splicing event at 4.1R pre-mRNA during erythroid differentiation. Blood 2001 ; 98 : 3809-16.
- 19. Théoleyre O, Deguillien M, Morinière M, et al. Spi-1/PU.1 but not Fli-1 inhibits erythroid-specific alternative splicing of 4.1R pre-mRNA in murine erythroleukemia cells. Oncogene 2004 ; 23 : 920-7.
- 20. Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002 ; 108 : 439-51.
- 21. Nogues G, Kadener S, Cramer P, et al. Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem 2002 ; 277 : 43110-4.
- 22. Kadener S, Fededa JP, Rosbash M, Kornblihtt AR. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci USA 2002 ; 99 : 8185-90.
- 23. Furger A, O’Sullivan JM, Binnie A, et al. Promoter proximal splice sites enhance transcription. Genes Dev 2002 ; 16 : 2792-9.
- 24. Kwek KY, Murphy S, Furger A, et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 2002 ; 9 : 800-5.
- 25. Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 1998 ; 2 : 751-9.
- 26. Fong YW, Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 2001 ; 414 : 929-33.
- 27. Tian H. RNA ligands generated against complex nuclear targets indicate a role for U1 snRNP in co-ordinating transcription and RNA splicing. FEBS Lett 2001 ; 509 : 282-6.
- 28. Lai MC, Teh BH, Tarn WY. A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 1999 ; 274 : 11832-41.