Abstracts
Résumé
Les microARN sont des ARN non codants de 21 à 25 nucléotides qui contrôlent l’expression génique au niveau post-trancriptionnel. Plusieurs centaines de gènes codant pour des microARN ont été identifiés chez les animaux, et une quarantaine chez les plantes. Certains de ces gènes sont conservés entre espèces et parfois même entre phylums. Ces microARN règlent l’expression génique en s’appariant avec des ARNm cibles dont ils sont partiellement complémentaires. Cette hybridation réprime la traduction de la protéine correspondante ou clive l’ARNm cible au milieu du site de fixation du microARN. Ce dernier mécanisme est très similaire à celui mis en oeuvre lors de l’interférence par l’ARN.
Summary
MicroRNAs (miRs) are small non coding RNA, about 21-25 nucleotides in length, that direct post transcriptional regulation of gene expression through interaction with homologous mRNAs. Hundreds miR genes have been identified in animals and 40 in plants. Many of them are conserved between related species, and in some cases across phyla. Two mechanisms for regulation of gene expression by miRs have been reported. As described for lin-4 and let-7 miR of C.elegans, miRs can inhibit translation, which seems to represent the major mode of regulation in animals, or can direct cleavage of target mRNAs, which seems to represent the major mode of regulation in plants.
Appendices
Références
- 1. Banerjee D, Slack F. Control of developmental timing by small tenporal RNAs : a paradigm for RNA-mediated regulation of gene expression. BioEssays 2002 ; 24 : 119-29.
- 2. Vaucheret H, Beclin C, Fagard M, et al. Post-transcriptional gene silencing in plants. J Cell Sc 2001 ; 114 : 3083-91.
- 3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochromic gene lin-4 encodes small RNA with antisens complementary to lin-14. Cell 1993 ; 75 : 843-54.
- 4. Bartel DP. MicroRNAs : genomics, biogenesis, mechanism, and function. Cell 2004 ; 116 : 281-97.
- 5. Lee Y, Anh C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003 ; 425 : 415-9.
- 6. Lund E, Güttinger S, Calado A, et al. Nuclear export of microARN precursors. Science 2004 ; 303 : 95-8.
- 7. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000 ; 403 : 901-6.
- 8. Pasquinelli AE, Reinhart BJ, Slack FJ, et al. Conservation of the sequence and temporal expression of let-7 heterochromic regulatory RNA. Nature 2000 ; 408 : 86-9.
- 9. Lagos-Quintina M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001 ; 294 : 853-8.
- 10. Lau NC, Lim LP, Weinstein G, Bartel DP. An abundant class of tiny RNA with probable regulatory roles in Caenorhabditis elegans. Science 2001 ; 294 : 858-62.
- 11. Lee RC, Ambros V. An extensive class of small RNA in Caenorhabditis elegans. Science 2001 ; 294 : 862-4.
- 12. Lai EC, Tomoncak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol. 2003 ; 42 : 1-20.
- 13. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003 ; 17 : 1-18.
- 14. Lim LP, Glasner ME, Yekta S, et al. Vertebrate microRNA genes. Science 2003 ; 299 : 1540.
- 15. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation : stepwise processing and subcellular localization. EMBO J 2002 ; 21 : 4663-70.
- 16. Brennecke J, Hipfner DR, Stack A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003 ; 113 : 25-36.
- 17. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 supresses cell death and is required for normal fat metabolism. Curr Biol 2003 ; 13 : 790-5.
- 18. Kim J, Krichevsky A, Grad Y, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad SciUSA 2004 ; 101 : 360-5.
- 19. Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002 ; 16 : 1616-26.
- 20. Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002 ; 14 : 1605-19.
- 21. Park W, Li J, Song R, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002 ; 12 : 1484-95.
- 22. Xie Z, Johanen LK, Gustafson AM, et al. Genetic and functional diversification of small RNA pathways in plants. PloS Biol. 2004 ; 2 : 1-11.
- 23. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003 ; 9 : 277-9.
- 24. Wang JF, Zhou H, Chen YQ, et al. Identification of 20 microRNA from Oryza sativa. Nucleic Acids Res 2004 ; 32 : 1688-95.
- 25. Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE1 : blind men and elephants in Arabidopsis development. Trends Plant Sci 2002 ; 7 : 487-91.
- 26. Boutet S, Vazquez F, Liu J, et al. Arabidopsis HEN1 : a genetic link between endogenous miRNA controlling development and siRNA controlling silencing and virus resistance. Curr Biol 2003 ; 13 : 843-8.
- 27. Vazquez F, Gasciolli V, Crété P, Vaucheret H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development but not posttranscriptional transgene silencing. Curr Biol 2004 ; 14 : 346-51.
- 28. Vaucheret H, Vazquez F, Crete P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 2004 ; 18 : 1187-97.
- 29. Hutvagner G, Zamore PD. A microARN in a multiple turnover RNAi enzyme complex. Science 2002 ; 297 : 2056-60.
- 30. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8. Science 2004 ; 304 : 594-6.
- 31. Stark A, Brennecke J, Rusell RB, Cohen SM. Identification of Drosophila microRNA targets. PloS Biol 2003 ; 1 : 1-12.
- 32. Lewis BP, Shih IU, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003 ; 115 : 787-98.
- 33. Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002 ; 297 : 2053-6.
- 34. Plasterk RHA. RNA silencing : Genome’s immune system. Science 2002 ; 296 : 1263-5.
- 35. Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003 ; 11 : 2730-41.
- 36. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004 ; 303 : 2022-5.
- 37. Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets. Cell 2002 ; 110 : 513-20.
- 38. Mallory AC, Vaucheret H. MicroRNAs : something important between the genes. Curr Op in Plant Biol 2004 ; 7 : 1-6.
- 39. Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factor ; genome-wide comparative analysis among eukaryotes. Science 2000 ; 290 : 2105-10.
- 40. Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature 2003 ; 425 : 257-63.