Abstracts
Résumé
Les rétro-éléments constituent un moteur de la diversité du monde vivant du fait de leurs propriétés de transposition. Parmi eux se distinguent les rétrovirus, dont la « transposition » se propage en une véritable infection de la cellule initiale aux cellules et organismes voisins. Une étape clé de la conversion d’un rétrotransposon en agent infectieux est l’acquisition d’une glycoprotéine d’enveloppe, désignée Env. Nous présentons ici différents exemples où a pu être retracée cette « capture d’enveloppe », qui a conduit à la constitution de rétrovirus infectieux de mammifères, et montrons qu’un tel événement de capture s’est probablement produit dans le cas de la protéine Env du rétrovirus humain HTLV. Ces captures expliqueraient l’étroite parenté de la protéine Env de différents rétrovirus pourtant phylogéniquement distants. L’élucidation des diverses « étymologies » rétrovirales devrait aider à mieux comprendre la phylogénie des rétrovirus et la physiopathologie des infections rétrovirales, voire mener à la découverte de nouveaux rétro-éléments.
Summary
Retroelement transposition is a major source of diversity in genome evolution. Among the retrotransposable elements, the retroviruses are distinct in that their « transposition » extends from their initial host cells to neighboring cells and organisms. A determining step in the conversion of a retrotransposable element into an infectious retrovirus is the acquisition of an envelope glycoprotein, designated Env. Here, we review some examples of envelope « capture » by mammal retroviruses and provide evidence for such a mechanism by HTLV. This phenomenon may explain the notable conservation of env genes observed between phylogenetically distant retroviruses. Elucidation of these recombination processes should help to clarify retroviral phylogeny, better understand retroviral pathogenesis, and may lead to the identification of new retroelements.
Appendices
Références
- 1. http://www.ncbi.nlm.nih.gov:80/books/bv.fcgi?call=bv.View..ShowSection &rid=rv.table.3431. Tableau et nomenclature des rétro-éléments.
- 2. Anxolabéhère D, Nouaud D, Miller WJ. Éléments transposables et nouveautés génétiques chez les eucaryotes. Med Sci (Paris) 2000 ; 16 : I-IX.
- 3. Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 1999 ; 9 : 657-63.
- 4. Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 2000 ; 74 : 3715-30.
- 5. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid= rv.section.3432. Bourgeonnement des particules rétrovirales.
- 6. Garoff H, Hewson R, Opstelten DJ. Virus maturation by budding. Microbiol Mol Biol Rev 1998 ; 62 : 1171-90.
- 7. Owens RJ, Dubay JW, Hunter E, Compans RW. Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 1991 ; 88 : 3987-91.
- 8. Basyuk E, Galli T, Mougel M, et al. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell 2003 ; 5 : 161-74.
- 9. Sitbon, M, Nishio J, Wehrly K, Chesebro B. Pseudotyping of dual-tropic recombinant viruses generated by infection of mice with different ecotropic murine leukemia viruses. Virology 1985 ; 140 : 144-51.
- 10. Song SU, Gerasimova T, Kurkulos M, et al. An env-like protein encoded by a Drosophila retroelement : evidence that gypsy is an infectious retrovirus. Genes Dev 1994 ; 8 : 2046-57.
- 11. Malik HS, Henikoff S, Eickbush TH. Poised for contagion : evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 2000 ; 10 : 1307-18.
- 12. Pearson MN, Rohrmann GF. Transfer, incorporation, and substitution of envelope fusion proteins among members of the baculoviridae, orthomyxoviridae, and metaviridae (insect retrovirus) families. J Virol 2002 ; 76 : 5301-4.
- 13. Isfort RJ, Witter R, Kung HJ. Retrovirus insertion into herpesviruses. Trends Microbiol 1994 ; 2 : 174-7.
- 14. Sitbon M, Denesvre C, Dardalhon V, et al. Les rétrovirus leucémogènes murins (MLV) : pathogènes, gènes, et outils génétiques. Virologie 2001 ; 5 : 265-93.
- 15. Stewart MA, Warnock M, Wheeler A, et al. Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol 1986 ; 58 : 825-34.
- 16. Van der Kuyl AC, Dekker JT, Goudsmit J. Discovery of a new endogenous type C retrovirus (FcEV) in cats : evidence for RD-114 being an FcEV(Gag-Pol)/baboon endogenous virus BaEV(Env) recombinant. J Virol 1999 ; 73 : 7994-8002.
- 17. Battini JL, Heard JM, Danos O. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol 1992 ; 66 : 1468-75.
- 18. York DF, Vigne R, Verwoerd DW, Querat G. Nucleotide sequence of the jaagsiekte retrovirus, an exogenous and endogenous type D and B retrovirus of sheep and goats. J Virol 1992 ; 66 : 4930-9.
- 19. Hecht SJ, Stedman KE, CarlsonJO, DeMartini JC. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc Natl Acad Sci USA 1996 ; 93 : 3297-302.
- 20. Kim FJ, Manel N, Garrido EN, et al. Human T-cell leukemia virus type 1 and 2 envelope SU subdomains and critical determinants in receptor binding. 2004 (soumis pour publication).
- 21. Kim FJ, Seiliez I, Denesvre C, et al. Definition of an amino-terminal domain of the human T-cell leukemia virus type 1 envelope surface unit that extends the fusogenic range of an ecotropic murine leukemia virus. J Biol Chem 2000 ; 275 : 23417-20.
- 22. Lerat E., Brunet F, Bazin C, Capy P. Is the evolution of transposable elements modular ? Genetica 1999 ; 107 : 15-25.
- 23. Lerat E, Capy P. Retrotransposons and retroviruses : analysis of the envelope gene. Mol Biol Evol 1999 ; 16 : 1198-207.
- 24. Boeke JD, Pickeral OK. Retroshuffling the genomic deck. Nature 2001 ; 398 : 108-9, 111.
- 25. Courseaux A, NahonJL. Birth of two chimeric genes in the Hominidae lineage. Science 1999 ; 291 : 1293-7.
- 26. Pavlicek, A, Paces J, Elleder D, Hejnar J. Processed pseudogenes of human endogenous retroviruses generated by LINEs : their integration, stability, and distribution. Genome Res 2002 ; 12 : 391-9.
- 27. Benit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 2001 ; 75 : 11709-19.
- 28. Gallaher WR, Ball JM, Garry RF, et al. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retrovir 1989 ; 5 : 431-40.
- 29. Pancino G, Ellerbrok H, Sitbon M, Sonigo P. Conserved framework of envelope glycoproteins among lentiviruses. Curr Top Microbiol Immunol 1994 ; 188 : 77-105.
- 30. Battini JL, Danos O, Heard JM. Receptor-binding domain of murine leukemia virus envelope glycoproteins. J Virol 1995 ; 69 : 713-9.
- 31. Fass D, Davey RA, Hamson CA, et al. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 1997 ; 277 : 1662-6.
- 32. Manel N, Kim FJ, Kinet S, et al. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003 ; 115 : 449-59.
- 33. Manel N, Kinet S, Battini JL, et al. The HTLV receptor is an early T cell activation marker whose expression requires de novo protein synthesis. Blood 2002 ; 17 : 17.
- 34. Lavillette D, Ruggieri A, Russell JS, Cosset FL. Activation of a cell entry pathway common to type C mammalian retroviruses by soluble envelope fragments. J Virol 2000 ; 74 : 295-304.
- 35. Blond JL, Lavillette D, Cheynet V, et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 2001 ; 74 : 3321-9.
- 36. Kattstrom PO, Bjerneroth G, Nilsson BO, et al. A retroviral gp70-related protein is expressed at specific stages during mouse oocyte maturation and in preimplantation embryos. Cell Differ Dev 1989 ; 28 : 47-54.
- 37. Mi SX, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000 ; 403 : 785-9.
- 38. Anderson MM, Lauring AS, Burns CC, Overbaugh J. Identification of a cellular cofactor required for infection by feline leukemia virus. Science 2000 ; 287 : 1828-30.
- 39. Denesvre C, Soubieux D, Pin G, et al. Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J Gen Virol 2003 ; 84 : 3233-8.
- 40. Stuhlmann H, Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol 1992 ; 66 : 2378-88.
- 41. Sonigo P. Pour une biologie moléculaire darwinienne. Med Sci (Paris) 2002 ; 18 : 1038-9.
- 42. Lower, R. The pathogenic potential of endogenous retroviruses : facts and fantasies. Trends Microbiol 1999 ; 7 : 350-6.
- 43. Perron H, Seigneurin JM. Human retroviral sequences associated with extracellular particles in autoimmune diseases : epiphenomenon or possible role in aetiopathogenesis ? Microbes Infect 1999 ; 1 : 309-22.
- 44. Portis JL. Perspectives on the role of endogenous human retroviruses in autoimmune diseases. Virology 2002 ; 296 : 1-5.
- 45. Cosset FL, Takeuchi LJ, Battini RA, et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995 ; 69 : 7430-6.
- 46. Kim FJ, Battini JL, Manel N, Sitbon M. Emergence of vertebrate retroviruses and envelope capture. Virology 2004 ; 318 : 183-91.