Abstracts
Résumé
Le système dit «endocannabinoïde» pourrait tout à fait être dénommé autrement, tant il apparaît plus large et plus complexe que celui finalement relativement restreint des cannabinoïdes exogènes. Jusqu’à ce jour, les études sur les cannabinoïdes, puis sur les endocannabinoïdes, vont de rebondissements en remise en cause de concepts établis. Ainsi, on attendait un alcaloïde comme principe actif du cannabis, pour finalement identifier un terpénoïde (Δ9-tétrahydrocannabinol). Étant donné sa nature chimique, ce dernier devait théoriquement agir de manière indépendante de tout récepteur; or, deux récepteurs ont déjà été clonés (CB1 et CB2) et l’existence d’autres récepteurs est très probable. La recherche des ligands endogènes a réservé une surprise de taille aux scientifiques: ce sont des composés lipidiques (cinq ont été identifiés à ce jour); à peine deux d’entre eux avaient-ils été classés comme des neurotransmetteurs à part entière que leur capacité d’agir comme des messagers neuronaux rétrogrades a été mise en évidence. Enfin, les endocannabinoïdes activent des récepteurs, tels que les vanilloïdes, appartenant à d’autres familles, et peuvent donc moduler de manière extrêmement fine de multiples voies de transduction du signal et de l’information, étendant des perspectives thérapeutiques déjà très prometteuses.
Summary
The major psychoactive component of cannabis derivatives, Δ9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.
Appendices
Références
- 1. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner T. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561-4.
- 2. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946-9.
- 3. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61-5.
- 4. Fride E. Endocannabinoids in the central nervous system-an overview. Prostaglandins, Leukotrienes and Essential Fatty Acids 2002; 66: 221-33.
- 5. Hanus L, Gopher A, Almog S, Mechoulam R. Two new unsaturated fatty acid ethanolamides in the brain that bind to the cannabinoid receptor. J Med Chem 1993; 36: 3032-4.
- 6. Mechoulam R, Ben-Shabat S, Hanus L, et al. identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50: 83-90.
- 7. Hanus L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 2001; 98: 3662-5.
- 8. Giuffrida R, Beltramo M, Piomelli D. Mechanism of endocannabinoid inactivation: biochemistry and pharmacology. J Pharm Exp Ther 2001; 298: 7-14.
- 9. Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins, Leukotrienes and Essential Fatty Acids 2002; 66: 101-21.
- 10. Sagan S, Venance L, Torrens Y, Cordier J, Glowinski J, Giaume C. In cultured mouse astrocytes, but not in neurons, anandamide has pharmacological effects distincts from synthetic cannabinoids. Eur J Neurosci 1999; 11: 691-9.
- 11. Haller J, Bakos N, Szirmay M, Ledent C, Freund TF. The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptors on anxiety. Eur J Neurosci 2002; 16: 395-8.
- 12. Di Marzo V, De Petrocellis L, Fezza F, Ligresti A, Bisogno T. Anandamide receptors. Prostaglandins, Leukotrienes and Essential Fatty Acids 2002; 66: 377-91.
- 13. Suguira T, Koyabashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins, Leukotrienes and Essential Fatty Acids 2002; 66: 173-92.
- 14. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol 1999; 58: 315-48.
- 15. McAllister SD, Glass M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins, Leukotrienes and Essential Fatty Acids 2002; 66: 161-71.
- 16. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. Embo J 2001; 20: 7033-40.
- 17. Maingret F, Patel AJ, Lazdunski M, Honore E. The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. Embo J 2001; 20: 47-54.
- 18. Schweitzer P. Cannabinoids decrease the K+ M-current in hippocampal CA1 neurons. J Neurosci 2000; 20: 51-8.
- 19. Venance L, Piomelli D, Glowinski J, Giaume C. Inhibition by anadamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 1995; 376: 590-4.
- 20. Venance L, Sagan S, Giaume C. R-methanandamide inhibits receptor-induced calcium responses by depleting internal calcium stores in cultured astrocytes. Eur J Physiol 1997; 434: 147-9.
- 21. Galve-Roperh I, Sanchez C, Cortes ML, Gomez del Pulgar T, Izquierdo M, Guzman M. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase regulation. Nat Med 2000; 6: 313-9.
- 22. Guzman M, Sanchez C, Galve-Roperh I. Cannabinoids and cell fate. Pharmacol Ther 2002; 95: 175-84.
- 23. Carlson G, Wang Y, Alger BE. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 2002; 5: 723-4.
- 24. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science 2002; 296: 678-82.
- 25. Kreitzer AC, Regehr WG. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 2002; 12: 324-30.
- 26. Llano I, Leresche N, Marty A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 1991; 6: 565-74.
- 27. Pitler TA, Alger BE. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 1992; 12: 4122-32.
- 28. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 2001; 21: 109-16.
- 29. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA 2002; 99: 8384-8.
- 30. Doherty J, Dingledine R. Functional interactions between cannabinoid and metabotropic glutamate receptors in the central nervous system. Curr Opin Pharmacol 2003; 3: 46-53.
- 31. Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 2002; 5: 446-51.
- 32. Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530-4.
- 33. Costa B, Vailati S, Colleoni M. SR 141716A, a cannabinoid receptor antagonist, reverses the behavioural effects of anandamide-treated rats. Behav Pharmacol 1999; 10: 327-31.
- 34. Dewey WL. Cannabinoid pharmacology. PharmacolRev 1986; 38: 151-78.
- 35. Ledent C, Valverde O, Cossu G, et al. Unresponsivenes to cannabinoids and feduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999; 283: 15.
- 36. Pertwee RG. Cannabinoid receptors and pain. Prog Neurobiol 2001; 63: 569-611.
- 37. Welch SP, Huffman JW, Lowe J. Differential blockade of the antinociceptive effects of centrally administered cannabinoids by SR141716A. J Pharmacol Exp Ther 1998; 286: 1301-8.
- 38. Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature 1998; 394: 277-281.
- 39. Misner DL, Sullivan JM. Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J Neurosci 1999; 19: 6795-805.
- 40. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 1997; 388: 773-8.
- 41. Reibaud M, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A. Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 1999; 379: R1-R2
- 42. Murillo-Rodriguez E, Sanchez-Alavez M, Navarro L, Martinez-Gonzalez D, Drucker-Colin R, Prospero-Garcia O. Anandamide modulates sleep and memory in rats. Brain Res 1998; 812: 270-4.
- 43. Chakrabarti A, Ekuta JE, Onaivi ES. Neurobehavioral effects of anandamide and cannabinoid receptor gene expression in mice. Brain Res Bull 1998; 45: 67-74
- 44. Berrendero F, Maldonado R. Involvement of the opioid system in the anxiolytic-like effects induced by Δ9-tetrahydrocannabinol. Psychopharmacology 2002; 163: 111-7.
- 45. Miczek KA. Delta9-tetrahydrocannabinol: Antiagressive effects in mice, rats, and squirrel monkeys. Science 1978; 199: 1459-61.
- 46. Rodriguez de Fonseca F, Navarro M, Gómez R, et al. An anorexic lipid mediator regulated by feeding. Nature 2001; 414: 209-12.
- 47. Walker JM, Huang SM. Cannabinoid analgesia. Pharmacol Ther 2002; 95: 127-35.
- 48. Hamann W, di Vadi PP. Analgesic effect of the cannabinoid analogue nabilone is not mediated by opioid receptors. Lancet 1999; 353: 560.
- 49. Jarvinen T, Pate DW, Laine K. Cannabinoids in the treatment of glaucoma. Pharmacol Ther 2002; 95: 203-20.
- 50. Berry EM, Mechoulam R. Tetrahydrocannabinol and endocannabinoids in feeding and appetite. Pharmacol Ther 2002; 95: 185-90.
- 51. Piomelli D, Giuffrida A, Calignano A, Rodriguez de Fonseca F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 2000; 21: 218-24.
- 52. Romero J, Lastres-Becker I, de Miguel R, et al. The endogenous cannabinoid system and the basal ganglia. Biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 2002; 95: 137-52.
- 53. Pertwee RG. Cannabinoids and multiple sclerosis. Pharmacol Ther 2002; 95: 165-74.
- 54. Van der Stelt M, Veldhuis WB, Maccarrone M, et al. Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 2002; 26: 317-46.