Abstracts
Résumé
La perte des mécanismes de contrôle de la progression du cycle de division cellulaire ou du déclenchement des processus d’apoptose permet aux cellules d’acquérir des propriétés décisives pour leur transformation tumorale. Plusieurs protéine kinases participent à la transduction de signaux qui neutralisent des composants de la machinerie apoptotique. Dans ce contexte, la protéine kinase CK2 (caséine kinase 2), dont la structure vient d’être élucidée, apparaît comme un régulateur déterminant pour la viabilité cellulaire. Il est concevable que la surexpression de la CK2 observée dans les cancers puisse conduire à la formation de signaux de survie contribuant à la tumorigenèse.
Summary
Protein kinase CK2 (formerly known as casein kinase 2) was among the first protein kinases to be identified and characterized. Surprisingly, in spite of intense efforts, the regulation and cellular functions of CK2 remain obscure. However, recent data on its molecular structure, its signal-mediated intracellular dynamic localization and its unexpected function in cell survival have raised new interest in this enzyme. These studies reveal unique features of CK2 and highlight its importance in the transduction of survival signals.
Appendices
Références
- 1. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369: 1-15.
- 2. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J 1998; 17: 2451-62.
- 3. Chantalat L, Leroy D, Filhol O, et al. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J 1999; 18: 2930-40.
- 4. Chen M, Cooper JA. The β subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci USA 1997; 94: 9136-40.
- 5. Boldyreff B, Issinger OG. A-Raf kinase is a new interacting partner of protein kinase CK2 β subunit. FEBS Lett 1997; 403: 197-9.
- 6. Niefind K, Guerra B, Ermakowa I, Issinger OG. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 2001; 20: 5320-31.
- 7. Pinna LA. Casein kinase 2: an eminence grise in cellular regulation? Biochim Biophys Acta 1990; 1054: 267-84.
- 8. Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C. Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 2001; 227: 81-90.
- 9. Filhol O, Nueda A, Martel V, et al. Live cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 2003 (sous presse)
- 10. Padmanabha R, Chen-Wu JL, Hanna DE, Glover CV. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10: 4089-99.
- 11. Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α’ catalytic subunit. Nat Genet 1999; 23: 118-21.
- 12. Bidwai AP, Reed JC, Glover CV. Cloning and disruption of CKB1, the gene encoding the 38-kDa β subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype. J Biol Chem 1995; 270: 10395-404.
- 13. Roussou I, Draetta G. The Schizosaccharomyces pombe casein kinase IIα and β subunits: evolutionary conservation and positive role of the b subunit. Mol Cell Biol 1994; 14: 576-86.
- 14. Buchou T, Vernet M, Blond O, et al. Disruption of the regulatory subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol; 2003 23: 908-15.
- 15. Hanna DE, Rethinaswamy A, Glover CV. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 1995; 270: 25905-14.
- 16. Lorenz P, Pepperkok R, Ansorge W, Pyerin W. Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit β demonstrate participation of the kinase in mitogenic signaling. J Biol Chem 1993; 268: 2733-9.
- 17. Pepperkok R, Lorenz P, Jakobi R, Ansorge W, Pyerin W. Cell growth stimulation by EGF: inhibition through antisense- oligodeoxynucleotides demonstrates important role of casein kinase II. Exp Cell Res 1991; 197: 245-53.
- 18. Li D, Dobrowolska G, Aicher LD, et al. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem 1999; 274: 32988-96.
- 19. Vilk G, Saulnier RB, St Pierre R, Litchfield DW. Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem 1999; 274: 14406-14.
- 20. Lebrin F, Chambaz EM, Bianchini L. A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit α. Oncogene 2001; 20: 2010-22.
- 21. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K. Protein kinase CK2 signal in neoplasia. Histol Histopathol 2001; 16: 573-82.
- 22. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 2001; 20: 3247-57.
- 23. Seldin DC, Leder P. Casein kinase II α transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 1995; 267: 894-7.
- 24. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC. p53 deficiency and misexpression of protein kinase CK2α collaborate in the development of thymic lymphomas in mice. Oncogene 1998; 16: 2965-74.
- 25. Vilk G, Derksen DR, Litchfield DW. Inducible expression of the regulatory protein kinase CK2β subunit: incorporation into complexes with catalytic CK2 subunits and re- examination of the effects of CK2β on cell proliferation. J Cell Biochem 2001; 84: 84-99.
- 26. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE. Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer. Cancer Res 2001; 61: 3810-8.
- 27. Wang D, Westerheide SD, Hanson JL, Baldwin AS, Jr. Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000; 275: 32592-7.
- 28. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD. Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 1997; 272: 32606-12.
- 29. Krehan A, Ansuini H, Bocher O, Grein S, Wirkner U, Pyerin W. Transcription factors ets1, NF-κ B, and Sp1 are major determinants of the promoter activity of the human protein kinase CK2α gene. J Biol Chem 2000; 275: 18327-36.
- 30. Chen S, Guttridge DC, You Z et al. Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J Cell Biol 2001; 152: 87-96.
- 31. Song DH, Sussman DJ, Seldin DC. Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem 2000; 275: 23790-7.
- 32. Stambolic V, Mak TW, Woodgett JR. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 1999; 18: 6094-103.
- 33. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375-82.
- 34. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 2001; 276: 993-8.
- 35. Wang H, Davis A, Yu S, Ahmed K. Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem 2001; 227: 167-74.
- 36. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491-501.
- 37. Desagher S, Osen-Sand A, Montessuit S, et al. Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001; 8: 601-11.
- 38. Li PF, Li J, Muller EC, Otto A, Dietz R, von Harsdorf R. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 2002; 10: 247-58.
- 39. Krippner-Heidenreich A, Talanian RV, Sekul R, et al. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J 2001; 358: 705-15.
- 40. Songyang Z, Lu KP, Kwon YT, et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 1996; 16: 6486-93.
- 41. Kusk M, Ahmed R, Thomsen B, Bendixen C, Issinger OG, Boldyreff B. Interactions of protein kinase CK2β subunit within the holoenzyme and with other proteins. Mol Cell Biochem 1999; 191: 51-8.
- 42. Bren GD, Pennington KN, Paya CV. PKC-zeta associated CK2 participates in the turnover of free Iκ B α. J Mol Biol 2000; 297: 1245-58.
- 43. Raman C, Kuo A, Deshane J, Litchfield DW, Kimberly RP. Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem 1998; 273: 19183-9.
- 44. Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 1997; 16: 3089-96.
- 45. Li D, Meier UT, Dobrowolska G, Krebs EG. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem 1997; 272: 3773-9.
- 46. Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C. Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon p53 phosphorylation. J Biol Chem 1992; 267: 20577-83.
- 47. Bojanowski K, Filhol O, Cochet C, Chambaz EM, Larsen AK. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem 1993; 268: 22920-6.
- 48. Bonnet H, Filhol O, Truchet I, et al. Fibroblast growth factor-2 binds to the regulatory β subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996; 271: 24781-7.
- 49. Theis-Febvre N, Filhol O, Froment C, et al. Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 2003; 22: 220-32.