Abstracts
Résumé
L’observation selon laquelle la farnésylation est une modification post-traductionnelle nécessaire au pouvoir transformant de l’oncogène ras a conduit à la conception d’inhibiteurs de farnésyl transférase (FTI) afin de contrôler la croissance des tumeurs présentant des mutations de ras. Des études précliniques sur des modèles murins ont précisé l’effet inhibiteur sur la transformation tumorale et ont permis le développement clinique des FTI. Les études récentes de phases I et II confirment leur potentiel anti-tumoral et leur faible toxicité. Paradoxalement, alors que l’intérêt des FTI se précise au niveau clinique, le support moléculaire de leur activité biologique reste encore à définir. En effet, il est maintenant clair que Ras n’est pas la cible unique de l’effet anti-transformant des FTI et que d’autres protéines farnésylées, telle que RhoB, pourraient intervenir. Il reste donc à caractériser ces protéines, ce qui permettrait à la fois de compléter nos connaissances de l’oncogenèse et de définir les paramètres pharmacodynamiques de lé clinique des FTI.
Summary
The fact that proteins such as Ras require farnesylation to induce malignant transformation prompted many investigators to design farnesyl transferase inhibitors (FTI) as novel anticancer drugs. FTIs inhibit the growth of ras transformed cells in vitro and induce tumor regression in ras dependent tumor in vivo. Moreover, FTIs inhibit tumor progression in human tumor xenograft models. Currently, FTIs are undergoing phase I and II trials in various cancer types. They show impressive antitumour efficacy and they lack toxicity. Despite these promising results, the development of such molecules is hindered by the absence of appropriate clinical endpoints and of surrogate biological markers. Indeed, it seems likely that Ras is not the critical target of FTIs and that inhibition of the farnesylation of proteins such as RhoB, might also contribute to the observed antitumour properties. Identification of targets that underlie their biological effect is essential in order to predict and evaluate their efficacy.
Appendices
Références
- 1. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241-69.
- 2. Whyte DB, Kirschmeier P, Hockenberry TN, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997; 272: 14459-64.
- 3. Baron R, Fourcade E, Lajoie-Mazenc I, et al. RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci USA 2000; 97: 11626-31.
- 4. Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63: 133-9.
- 5. James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260: 1937-42.
- 6. Kohl NE, Mosser SD, Desolms SJ, et al. Selective inhibition of Ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934-7
- 7. Miquel K, Pradines A, Sun J, et al. GGTI-298 induces G0/G1 block and apoptosis whereas FTI-277 causes G2/M enrichment in A549 cells. Cancer Res 1997; 57: 1846-50.
- 8. Vogt A, Sun JZ, Qian YM, Hamilton AD, Sebti SM. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G(0)/G(1) and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 1997; 272: 27224-9.
- 9. Lebowitz PF, Sakamuro D, Prendergast GC. Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res 1997; 57: 708-13.
- 10. Du W, Liu A, Prendergast GC. Activation of the PI3K-AKT pathway masks the proapoptotic effects of farnesyltransferase inhibitors. Cancer Res 1999; 59: 4208-12.
- 11. Jiang K, Coppola D, Crespo NC, et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20: 139-48.
- 12. Sun JZ, Qian YM, Hamilton AD, Sebti SM. Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res 1995; 55: 4243-7.
- 13. Kohl NE, Omer CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1: 792-7.
- 14. Barrington RE, Subler MA, Rands E, et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 1998; 18: 85-92.
- 15. Prendergast GC, Davide JP, Desolms SJ, et al. Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol 1994; 14: 4193-202.
- 16. Sepp-Lorenzino L, Ma ZP, Bands E, et al. Peptidomimetic inhibitor of farnesyl protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995; 55: 5302-9.
- 17. Lerner EA, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitors in human tumor cell lines. Oncogene 1997; 15: 1283-8.
- 18. Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress ras transformation by interfering with rho activity. Mol Cell Biol 1995; 15: 6613-22.
- 19. Lebowitz PF, Prendergast GC. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene 1998; 17: 1439-45.
- 20. Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19: 1831-40.
- 21. Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation, induce apoptosis and suppress human tumor growth in nude mice. J Biol Chem 2000; 275: 17974-8.
- 22. Johnston SR, Ellis PA, Houston S, et al. A phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced breast cancer. Proc Am Soc Clin Oncol 2000; 20: A318.
- 23. Rubin E, Abbruzzese JL, Morrison BW, et al. A phase I trial of the farnesyl transferase inhibitor L-778123 on a 14 or 28-day dosing schedule. Proc Am Soc Clin Oncol 2000; 20: A689.
- 24. Schellens JHM, de Klerk G, Swart M, et al. Phase I and pharmacologic study with the novel farnesyl transferase inhibitor (FTI) R115777. Proc Am Soc Clin Oncol 2000; 20: A715.
- 25. Adjei AA, Erlichman C, Davis JN, et al. A phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000; 60: 1871-7.
- 26. Ryan DP, Eder JP, Supko JG, et al. Phase I clinical trial of the farnesyl transferase inhibitor BMS-214662 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2000; 20: A720.
- 27. Lancet JE, Rosenblatt JD, Liesveld JL, et al. Use of farnesyl transferase inhibitor R115777 in relapsed or refractory acute leukemias: preliminary results of a phase I trial. Proc Am Soc Clin Oncol 2000; 20: A5B.
- 28. Hurwitz HI, Amado R, Prager D, et al. Phase I pharmacokinetic trial of the farnesyl transferase inhibitor SCH66336 plus gemcitabine in advanced cancers. Proc Am Soc Clin Oncol 2000; 20: A717.
- 29. Bailey HH, Marnocha R, Arzoomanian R, et al. Phase I trial of weekly paclitaxel and BMS214662 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2001; 21: A314.
- 30. Britten CD, Rowinsky E, Yao SL, et al. The farnesyl protein transferase (FPTase) inhibitor L-778123 in patients with solid cancers. Proc Am Soc Clin Oncol 1999; 19: A597.
- 31. Lantry LE, Zhang Z, Yao R, et al. Effect of farnesyltransferase inhibitor FTI-276 on established lung adenomas from A/J mice induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2000; 21: 113-6.
- 32. Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 2001; 276: 16161-7.
- 33. Moasser MM, SeppLorenzino L, Kohl NE, et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 1998; 95: 1369-74.
- 34. Cohen-Jonathan E, Toulas C, Ader I, et al. The farnesyl transferase inhibitor FTI-277 suppresses the 24kDa bFGF-induced radioresistance in HeLa cells expressing wild type Ras. Rad Res 1999; 152: 404-11.
- 35. Bernhard EJ, McKenna WG, Hamilton AD, et al. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 1998; 58: 1754-61.