NouvellesNews

PPARγ : un récepteur nucléaire majeur de l’adipogenèsePPARγ : a major nuclear receptor in adipogenesis[Record]

  • Philippe Gervois and
  • Jean-Charles Fruchart

…more information

  • Philippe Gervois
    Unité de Recherche sur les lipoprotéines et l’athérosclérose,
    Inserm U.545,
    Institut Pasteur de Lille,
    1, rue du Professeur Calmette, 59019 Lille Cedex, France.

  • Jean-Charles Fruchart
    Faculté de Pharmacie,
    Université de Lille 2,
    3, rue du Professeur Laguesse, 59006 Lille, France.
    Jean-Charles.Fruchart@pasteur-lille.fr

Les récepteurs activés par les proliférateurs de peroxisomes (PPAR) appartiennent à la grande famille des récepteurs nucléaires d’hormones. Ces récepteurs sont des facteurs de transcription dont l’activité est modulée par l’interaction avec un ligand spécifique. De très nombreuses études réalisées au cours de la dernière décennie ont établi l’importance de ces récepteurs dans divers métabolismes, notamment dans l’homéostasie lipidique et glucidique ou encore dans le contrôle de la prolifération et de la différenciation cellulaires. Il existe trois types de PPAR, α, β (δ) et γ. Le PPARα est exprimé dans les tissus ayant un potentiel catabolique important pour les acides gras et principalement dans le foie. L‘expression du PPARβ est plutôt ubiquitaire alors que le PPARγ est plus spécifiquement exprimé dans le tissu adipeux. Les PPAR agissent au niveau moléculaire, c’est-à-dire qu’ils modulent la transcription des gènes [1]. D’un point de vue structurel, ils sont constitués de deux domaines majeurs : un domaine de fixation à l’ADN et un domaine d’interaction avec le ligand. Les PPAR se fixent sur une région spécifique de l’ADN située dans la région régulatrice (promoteur) des gènes cibles et appelée élément de réponse aux proliférateurs de peroxisomes (PPRE). L’activation du récepteur par son ligand se traduit par l’association (dimérisation) entre PPAR et un récepteur de l’acide rétinoïque, RXR (retinoid X receptor). Le dimère ainsi formé se lie au PPRE et provoque l’activation de la transcription du gène cible. La participation du PPARγ à diverses voies biologiques a un double intérêt, fondamental et clinique. En effet, le PPARγ intervient dans des processus physiopathologiques cruciaux tels que la différenciation, la résistance à l’insuline, le diabète de type 2, l’athérosclérose et le cancer. L’implication physiopathologique du PPARγ a encouragé la recherche de ligands endogènes. Les activateurs endogènes du PPARγ sont des acides gras et des dérivés d’acides gras qui représentent, cependant, des ligands de faible affinité. Des eïcosanoïdes (il s’agit d’une famille complexe et nombreuse de molécules à 20 atomes de carbone, eikosi signifie 20 en grec, dérivées d’acides gras insaturés dont le principal est l’acide arachidonique) tels que la 15-désoxy-Δ12,14 prostaglandine-J2, et des composants des LDL oxydées tels que les acides 9- et 13-hydroxyoctadécadiénoïque, constituent des ligands naturels plus spécifiques pour le PPARγ [2, 3]. L’activation du PPARγ par ces derniers ligands est apparue surprenante jusqu’à la démonstration de l’action du PPARγ dans le contrôle de l’expression de certains gènes de l’inflammation [4, 5]. Plusieurs ligands synthétiques de forte affinité ont été élaborés pour le PPARγ. Ces ligands appartiennent à la classe des thiazolidinediones (ou glitazones, dont les trois principales sont la troglitazone, la rosiglitazone et la pioglitazone) et sont utilisés en clinique pour leur propriété de sensibilisation de la réponse à l’insuline chez les patients diabétiques de type 2 [6]. De nouveaux agents pharmacologiques incluant des dérivés aryl-tyrosine ont été également développés et apparaissent comme des molécules prometteuses pour une utilisation en laboratoire et pour l’application clinique [7]. Le PPARγ intervient dans la différenciation adipocytaire par son action sur la régulation de l’expression de nombreux gènes impliqués dans le phénotype adipocytaire. Les premiers travaux ont montré que le PPARγ est capable de promouvoir l’adipogenèse dans des cellules non adipogéniques telles que les fibroblastes NIH-3T3. Le rôle du PPARγ dans l’adipogenèse a également été confirmé in vivo grâce à l’élaboration de modèles murins [8, 9]. Le PPARγ existe sous deux formes, nommées PPARγ1 et PPARγ2, qui diffèrent par leur extrémité N-terminale. Une étude très récente a permis de démontrer que c’est principalement le PPARγ2 qui contrôle l’adipogenèse [10]. Les facteurs de transcription de la famille des C/EBP (CCAAT/enhancer binding protein …

Appendices