Abstracts
Résumé
Les dyslipidémies athérogènes sont responsables de la plupart des accidents cardiovasculaires ischémiques, qui restent dans les pays industrialisés une des causes majeures de morbidité et de mortalité. Une conduite nutritionnelle adaptée permet parfois de corriger l’excès de lipides circulants, mais lorsqu’elle s’avère insuffisante, la thérapeutique médicamenteuse s’impose. Les inhibiteurs de l’hydroxyméthylglutaryl-coenzyme A (HMG-CoA) réductase, ou statines, ont il y a plus de dix ans révolutionné le traitement de l’hypercholestérolémie. Cependant, il semble de plus en plus évident que le bénéfice thérapeutique de cette classe de médicaments dépasse celui imputable à la seule baisse du cholestérol circulant puisque les statines, de par leur mode d’action intracellulaire, modulent favorablement l’expression et l’activité de différentes protéines impliquées dans la fonction vasculaire. Grâce à leur extrême diversité d’action sur le compartiment vasculaire, ces molécules sont bien sûr un atout thérapeutique essentiel, mais représentent également un outil pharmacologique pouvant aider le chercheur à évaluer les modifications post-traductionnelles des protéines de signalisation, ainsi que les conséquences de ces modifications sur la régulation de l’expression des gènes.
Summary
Statins lower circulating cholesterol by blocking the activity of HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis. However, statins possess pleiotropic properties that complement their cholesterol lowering effect, and makes this class of drugs very efficient to prevent, stabilize and perhaps regress coronary heart diseases through their direct action on the vascular wall. This includes correction of endothelial dysfunction (vasoreactivity, monocyte adhesion, haemostasis), improvement of plaque stability (decrease in MMP expression), reduction of monocyte infiltration, decrease in oxidation level, decrease in cell proliferation, and repair of ischemic tissues through the mobilization of endothelial progenitors. These pleiotropic effects are explained by the fact that statins inhibit the intracellular production of metabolites located downstream of mevalonate in the cholesterol pathway, such as isoprenoids (farnesyl pyrophosphate and geranylgeranylpyrophosphate). These hydrophobic metabolites allow the membrane anchorage of small G proteins (Ras and Rho) as well as the Gγ subunit of heterotrimeric G proteins, a post-translational step that is critical in the regulation of G protein signalling activity. Accordingly, the alteration of gene expression induced by statins can be reversed upon addition of these isoprenoids and not by cholesterol. The beneficial effects of statins are not restricted to the cardiovascular system; bone regeneration, cancer and HIV infection are also targeted. These drugs are therefore a promising tool, not only for the clinician but also for the biologist, allowing him/her to investigate the regulation of the gene expression that is controlled by the intracellular activity of membrane-anchored prenylated signalling proteins.
Appendices
Références
- 1. Bucher HC, Griffith LE, Guyatt GH. Systematic review on the risk and benefit of different cholesterol lowering interventions. Arterioscler Thromb Vasc Biol 1999; 19: 187-95.
- 2. Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 2001; 107: 1423-32.
- 3. John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation 1998; 98: 211-6.
- 4. O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997; 95: 1126-31.
- 5. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998; 101: 2711-9.
- 6. Rueckschloss U, Galle J, Holtz J, et al. Induction of NAD (P) H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 2001; 104: 1767-72.
- 7. Hernandez-Perera O, Perez-Sala D, Soria E, Lamas S. Involvement of rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res 2000; 87: 616-22.
- 8. Tedgui A, Mallat Z. Athérosclérose et inflammation. Med Sci 2001; 17: 162-9.
- 9. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events (CARE) investigators. Circulation 1998; 98: 839-44.
- 10. Horne BD, Muhlestein JB, Carlquist JF, et al. Statin therapy, lipid levels, C-reactive protein and the survival of patients with angiographically severe coronary artery disease. J Am Coll Cardiol 2000; 36: 1774-80.
- 11. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 1999; 100: 230-5.
- 12. Ambrosi P, Aillaud MF, Habib G, et al. Fluvastatin decreases soluble thrombomodulin in cardiac transplant recipients. Thromb Haemost 2000; 83: 46-8.
- 13. Juhan-Vague I, Alessi MC. Regulation of fibrinolysis in the development of atherothrombosis: role of adipose tissue. Thromb Haemost 1999; 82: 832-6.
- 14. Nalbone G, Alessi MC, Juhan-Vague I. Système fibrinolytique, métalloprotéases et pathologie vasculaire. Med Sci 2001; 17: 170-6.
- 15. Essig M, Nguyen G, Prie D, Escoubet B, Sraer JD, Friedlander G. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells. Role of geranylgeranylation and Rho proteins. Circ Res 1998; 83: 683-90.
- 16. Lopez S, Peiretti F, Bonardo B, Juhan-Vague I, Nalbone G. Effect of atorvastatin and fluvastatin on the expression of plasminogen activator inhibitor type-1 in cultured human endothelial cells. Atherosclerosis 2000; 152: 359-66.
- 17. Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol 1999; 19: 2894-900.
- 18. Yoshida M, Sawada T, Ishii H, et al. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol 2001; 21: 1165-71.
- 19. Weitz-Schmidt G, Welzenbach K, Brinkmann V, et al. Statins selectively inhibit leucocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7 : 687-92.
- 20. Bernot D, Benoliel AM, Peiretti F, et al. Atorvastatin inhibits monocyte adhesion to TNFα-activated human endothelial cells (HUVEC). J Cardiovasc Pharmacol 2003 (sous presse).
- 21. Wojciak-Stothard B, Williams L, Ridley AJ. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J Cell Biol 1999; 145: 1293-307.
- 22. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103: 926-33.
- 23. Corti R, Fayad ZA, Fuster V, et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001; 104: 249-52.
- 24. Zhao XQ, Yuan C, Hatsukami TS, et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001; 21: 1623-9.
- 25. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998; 31: 684-91.
- 26. Bustos C, Hernandez-Presa MA, Ortego M, et al. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol 1998; 32: 2057-64.
- 27. Baldassarre D, Veglia F, Gobbi C, et al. Intima-media thickness after pravastatin stabilizes also in patients with moderate to no reduction in LDL-cholesterol levels: the carotid atherosclerosis italian ultrasound study. Atherosclerosis 2000; 151: 575-83.
- 28. Romano M, Diomede L, Sironi M, et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest 2000; 80: 1095-100.
- 29. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 1998; 18: 1671-8.
- 30. Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001; 103: 276-83.
- 31. Lopez S, Peiretti F, Bonardo B, et al. Effect of atorvastatin on plasminogen activator inhibitor type-1 synthesis in human monocytes/macrophages. J Cardiovasc Pharmacol 2001; 37: 762-8.
- 32. Kothe H, Dalhoff K, Rupp J, et al. Hydroxymethylglutaryl coenzyme a reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation 2000; 101: 1760-3.
- 33. Colli S, Eligini S, Lalli M, et al. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol 1997; 17: 265-72.
- 34. Ganne F, Vasse M, Beaudeux JL, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes : a possible protective mechanism against atherothrombosis. Thromb Haemost 2000; 84: 680-8.
- 35. Fukumoto Y, Libby P, Rabkin E, et al. Statins alter smooth muscle cell accumulation and collagen content in established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 2001; 103: 993-9.
- 36. Guijarro C, Blanco-Colio LM, Massy ZA, et al. Lipophilic statins induce apoptosis of human vascular smooth muscle cells. Kidney Int 1999; 71 (suppl): S88-91.
- 37. Laufs U, Marra D, Node K, Liao JK. 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27 (Kip1). J Biol Chem 1999; 274: 21926-31.
- 38. Degraeve F, Bolla M, Blaie S, et al. Modulation of COX-2 expression by statins in human aortic smooth muscle cells: involvement of geranylgeranylated proteins. J Biol Chem 2001; 276: 46849-55.
- 39. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344-9.
- 40. Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103: 2885-90.
- 41. Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001; 108: 399-405.
- 42. Jones SP, Trocha SD, Lefer DJ. Pretreatment with simvastatin attenuates myocardial dysfunction after ischemia and chronic reperfusion. Arterioscler Thromb Vasc Biol 2001; 21: 2059-64.
- 43. Ono A, Freed EO. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad SciUSA 2001; 98: 13925-30.