Abstracts
Résumé
L’apparition du noyau dans les cellules eucaryotes a imposé la mise en place de mécanismes spécifiques permettant d’utiliser et de protéger l’information génétique mais également de coordonner les fonctions nucléaires et cytoplasmiques. Les études menées au cours des 10 dernières années ont permis d’élaborer un modèle selon lequel les molécules importées vers le noyau ou exportées vers le cytoplasme présentent des séquences d’adressage reconnues par des récepteurs spécifiques de transport nucléaire. Ces interactions sont orchestrées par la petite GTPase Ran qui assure la directionnalité des échanges nucléocytoplasmiques. Cet article tentera de faire le point des connaissances sur les mécanismes d’export nucléaire des protéines et le rôle de ces voies de transport dans la régulation d’autres fonctions cellulaires.
Summary
The nucleus of eukaryotic cells spatially separates DNA replication and RNA transcription from cytoplasmic protein synthesis. Thus, the nuclear membrane must ensure a strict and selective molecular control of exchanges between the nucleus and the rest of the cell, not only to protect and correctly transmit genetic information but also to synchronize nuclear and cytoplasmic functions. Studies over the past ten years led to the identification of targeting sequences (nuclear import or export sequences) recognized by specific receptors, called importins and exportins, which induce transport through the nuclear pore complex. Cargo-receptor interactions are orchestrated by Ran, a small and abundant GTPase. The compartmentalization of the factors that control the GDP- and GTP-bound state of Ran is believed to create a steep gradient of RanGDP (cytoplasmic) / RanGTP (nuclear) concentrations across the nuclear membrane. This gradient controls the directionality of nucleocytoplasmic transport pathways since cargo-importin complexes are induced to disassemble upon binding to RanGTP in the nucleus whereas RanGTP is used to assemble cargo-exportin complexes. In this review, we focus on what is known about the various steps involved in nuclear export of proteins, an intracellular route discovered more than 40 years ago, which has remained largely uncharacterized until recently. Furthermore, the regulation of nuclear transport is now considered one of the most efficient mechanisms to adapt cellular responses to environment conditions by restricting access to nuclear or cytoplasmic compartments. In particular, we illustrate here how nuclear export regulation participates to the control of transcriptional responses, cell cycle progression or the establishment of cell polarity.
Appendices
Références
- 1. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265-306.
- 2. Goldstein L. Localization of nucleus-specific protein as shown by transplantation experiments in Amoebae proteus. Exp Cell Res 1958; 15: 635-7.
- 3. Schmidt-Zachmann MS, Dargemont C, Kuhn LC, Nigg EA. Nuclear export of proteins: the role of nuclear retention. Cell 1993; 74: 493-504.
- 4. Nakielny S, Dreyfuss G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Cell Biol 1996; 134: 1365-73.
- 5. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83: 415-22.
- 6. Wen W, Meinkoth JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82: 463-73.
- 7. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82: 475-83.
- 8. Wolff B, Sanglier JJ, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 1997; 4: 139-47.
- 9. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90: 1051-60.
- 10. Fukuda M, Asano S, Nakamura T, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390: 308-11.
- 11. Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997; 278: 141-4.
- 12. Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (CRM1p) is an essential nuclear export factor. Cell 1997; 90: 1041-50.
- 13. Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D. Export of importin a from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90: 1061-71.
- 14. Lipowsky G, Bischoff FR, Schwarzmaier P, et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. Embo J 2000; 19: 4362-71.
- 15. Brownawell AM, Macara IG. Exportin 5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J Cell Biol 2002; 156: 53-64.
- 16. Yoshida K, Blobel G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 2001; 152: 729-40.
- 17. Mingot JM, Kostka S, Kraft R, Hartmann E, Gorlich D. Importin 13: a novel mediator of nuclear import and export. Embo J 2001; 20: 3685-94.
- 18. Black BE, Holaska JM, Rastinejad F, Paschal BM. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol 2001; 11: 1749-58.
- 19. Azuma Y, Dasso M. The role of Ran in nuclear function. Curr Opin Cell Biol 2000; 12: 302-7.
- 20. Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. Ran-binding protein 3 is a cofactor for CRM1mediated nuclear protein export. J Cell Biol 2001; 153: 1391-402.
- 21. Rexach M, Blobel G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 1995; 83: 683-92.
- 22. Allen NP, Huang L, Burlingame A, Rexach MF. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem 2001; 153: 29268-74.
- 23. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 2000; 148: 635-51.
- 24. Ribbeck K, Gorlich D. Kinetic analysis of translocation through nuclear pore complexes. Embo J 2001; 20: 1320-30.
- 25. Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 1999; 145: 645-57.
- 26. Black BE, Holaska JM, Levesque L, et al. NXT1 is necessary for the terminal step of CRM1-mediated nuclear export. J Cell Biol 2001; 152: 141-55.
- 27. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 1995; 270: 14209-13.
- 28. Yokoyama N, Hayashi N, Seki T, et al. A giant nucleopore protein that binds Ran/TC4. Nature 1995; 376: 184-8.
- 29. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997; 88: 97-107.
- 30. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18: 621-63.
- 31. Arenzana-Seisdedos F, Turpin P, Rodriguez M, et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. JCell Sci 1997; 110: 369-78.
- 32. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. Embo J 1999; 18: 6682-93.
- 33. Tam WF, Lee LH, Davis L, Sen R. Cytoplasmic sequestration of rel proteins by IκBα requires CRM-dependent nuclear export. Mol Cell Biol 2000; 20: 2269-84.
- 34. Rodriguez MS, Thompson J, Hay RT, Dargemont C. Nuclear retention of IκBα protects it from signal induced degradation and inhibits NF-κB transcriptional activation. J Biol Chem 1999; 274: 9108-15.
- 35. Yang J, Kornbluth S. All aboard the cyclin train: subcellular trafficking of cyclins and their Cdk partners. Trends Cell Biol 1999; 9: 207-10.
- 36. Hagting A, Karlsson C, Clute P, Jackman M, Pines J. MPF localization is controlled by nuclear export. EMBO J 1998; 17: 4127-38.
- 37. Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 1998; 17: 2728-35.
- 38. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 1998; 12: 2131-43.
- 39. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 2001; 410: 215-20.
- 40. Lopez-Girona A, Furnari B, Mondesert O, Russell P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 1999; 397: 172-5.
- 41. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H. Localization of human Cdc25C is regulated both by nuclear export and 14- 3-3 protein binding. Oncogene 2001; 20: 1839-51.
- 42. Pruyne D, Bretscher A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 2000; 113: 365-75.
- 43. Gulli MP, Peter M. Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes Dev 2001; 15: 365-79.
- 44. Nern A, Arkowitz RA. Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p. J Cell Biol 2000; 148: 1115-22.
- 45. Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M. Phosphorylation- and ubiquitin-dependent degradation of the cyclin- dependent kinase inhibitor Far1p in budding yeast. Genes Dev 1997; 11: 3046-60.
- 46. Blondel M, Galan JM, Chi Y, et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. Embo J 2000; 19: 6085-97.
- 47. Blondel M, Alepuz PM, Huang LS, Shaham S, Ammerer G, Peter M. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev 1999; 13: 2284-300.