Abstracts
Résumé
Les microtubules sont des filaments protéiques participant à des fonctions eucaryotes essentielles (motilité, trafic intracellulaire, division cellulaire) grâce à leurs propriétés dynamiques d’assemblage-désassemblage et à leur capacité d’interagir avec de nombreux facteurs cellulaires. La formation du fuseau mitotique, nécessaire à la ségrégation correcte des chromosomes pendant la division cellulaire, représente un exemple complexe de morphogenèse faisant intervenir les microtubules ainsi que des protéines réglant leurs propriétés dynamiques et leur organisation spatiale. Ces dernières années, de nombreux travaux, réalisés notamment dans le système modèle d’extraits d’oeufs de xénope, ont permis de mieux comprendre les mécanismes impliqués dans ce processus et ont incité le développement de nouvelles drogues anti-cancéreuses ciblant le fuseau mitotique.
Summary
Microtubules are highly dynamic polymers that switch stochastically between growing and shrinking states. This behaviour, called dynamic instability, is essential, in eukaryotic cells to many functions such as motility, intracellular trafficking or mitosis. The assembly of the mitotic spindle, required for the correct segregation of chromosomes during the cell cycle, depends on both microtubules and proteins regulating their dynamics and spatial arrangement. In recent years, many studies have been performed, especially in the xenopus egg extracts model system, to investigate the molecular mechanisms involved in this process. The growing understanding of the assembly and function of the mitotic spindle allows the development of new anti-tumoral drugs targeting this structure.
Appendices
Références
- 1. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83-117.
- 2. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312: 237-42.
- 3. Carlier MF. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol 1989; 115: 139-70.
- 4. Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 1992; 3: 1155-67.
- 5. Chrétien D, Jànosi, I, Taveau, JC, Flyvberg, H. Microtubule’s conformational cap. Cell Struct Funct 1999; 24: 299-303.
- 6. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 1990; 62: 579-89.
- 7. Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J CellBiol 1992; 118: 1097-108.
- 8. Ohkura H, Garcia MA, Toda T. Dis1/TOG universal microtubule adaptors : one MAP for all? J Cell Sci 2001; 114: 3805-12.
- 9. Andersen SS. Spindle assembly and the art of regulating microtubule dynamics by MAP and Stathmin/Op18. Trends Cell Biol 2000; 10: 261-7.
- 10. Schuyler SC, Pellman D. Microtubule « plus-end-tracking proteins »: the end is just the beginning. Cell 2001; 105: 421-4.
- 11. Sobel A. Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 1991; 16: 301-5.
- 12. Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84: 623-31.
- 13. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002; 14 : 18-24.
- 14. Schubart UK, Yu J, Amat JA, Wang Z, Hoffmann MK, Edelmann W. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J Biol Chem 1996; 14: 14062-6.
- 15. Desai A, Verma S, Mitchison TJ, Walczak CE. Kin I kinesins are microtubule-destabilizing enzymes. Cell 1999 : 96: 69-78.
- 16. Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128: 95-104.
- 17. Quarmby LM, Lohret TA. Microtubule severing. Cell Motil Cytosk 1999; 43: 1-9.
- 18. Tournebize R, Andersen SS, Verde F, Doree M, Karsenti E, Hyman AA. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 1997; 16: 5537-49.
- 19. Tournebize R, Popov A, Kinoshita K, et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2000; 2 : 13-9.
- 20. Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science 2001; 294: 1340-3.
- 21. Severin F, Habermann B, Huffaker T, Hyman T. Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 2001; 153: 435-42.
- 22. Wittmann T, Hyman AA, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001; 3: E28-34.
- 23. Sablin HP. Kinesins and microtubules: their structures and motor mechanisms. Curr Opin Cell Biol 2000; 12 : 35-41.
- 24. Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 1998; 10: 60-73.
- 25. Heald R, Walczak CE. Microtubule-based motor function in mitosis. Curr Opin Struct Biol 1999; 9: 268-74.
- 26. Karki S, Holzbaur ELG. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11 : 45-53.
- 27. Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 1998; 8: 903-13.
- 28. Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996; 382: 420-5.
- 29. Merdes A, Heald R, Samejima K, Earnshaw WC, Cleveland DW. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J Cell Biol 2000; 149: 851-62.
- 30. Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, a novel xenopus MAP involved in spindle pole organization. J Cell Biol 2000; 149: 1405-18.
- 31. Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 1999; 146: 597-608.
- 32. Boleti H, Karsenti E, Vernos I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 1996; 84: 49-59.
- 33. Hyman AA, Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 1996; 84: 401-10.
- 34. Wood, KW, Cornwell WD, Jackson JR. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001; 1: 370-7.
- 35. He L, Orr GA, Horwitz SB. Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discov Today 2001; 6: 1153-64.
- 36. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996; 56: 816-25.
- 37. Sakowicz R, Berdelis MS, Ray K, et al. A marine natural product inhibitor of kinesin motors. Science 1998; 280: 292-5.
- 38. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286: 971-4.
- 39. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 2000; 150: 975-88.