L’identification de IKK (IκB kinase), la kinase qui joue un rôle central dans l’activation du facteur de transcription NF-κB, a représenté une étape décisive dans la caractérisation d’une des voies de signalisation les plus utilisées par les cellules de mammifères. NF-κB, une famille de protéines dimériques formées par combinaison des sous-unités p50, relA, c-rel, p52 et relB, est présent à l’état latent dans le cytoplasme, associé à la molécule inhibitrice IκB. En réponse à une multitude de stimulus, parmi lesquels les cytokines inflammatoires TNF (tumor necrosis factor) et IL-1 (interleukine-1), le lipopolysaccharide (LPS) bactérien, divers mitogènes, des produits viraux, etc., IκB est phosphorylé sur deux résidus sérine spécifiques. Cette modification induit sa destruction par le protéasome et permet à NF-κB de rejoindre le compartiment nucléaire où il contrôle plusieurs centaines de gènes cibles participant à la réponse immune et inflammatoire, à l’adhérence, au cycle cellulaire et à la protection contre l’apoptose [1]. Au fil des années, de nombreuses kinases ont été proposées comme jouant un rôle d’IKK mais il a fallu attendre l’identification, sur IκBα, des résidus sérines accepteurs de phosphate (Ser32 et Ser36) pour réellement tester leur spécificité. Utilisant l’approche classique de la purification sur colonnes de chromatographies, les équipes de M. Karin [2] et de F. Mercurio [3] ont finalement réussi à purifier un complexe cytoplasmique de haut poids moléculaire (700-900 kDa) présentant les caractéristiques requises pour être une IKK bona fide: une activité kinase induite par l’IL-1 ou le TNF et la capacité de phosphoryler spécifiquement les Ser 32 et 36 de IκBα. En dépit de son haut poids moléculaire apparent, IKK ne semble constituée que de trois sous-unités: deux sous-unités catalytiques IKK-1 (ou IKKα) et IKK-2 (ou IKKβ) et une sous-unité régulatrice NEMO (ou IKKγ) [4]. IKK-1 et IKK-2 présentent une très forte homologie structurale (51 % d’identité et 67 % d’homologie chez Homo sapiens) et sont constituées toutes les deux d’un domaine catalytique du côté amino-terminal, d’un domaine leucine zipper, qui participe à leur homo- ou hétéro-dimérisation, d’un domaine hélice-boucle-hélice, qui coopère avec le domaine catalytique et, à l’extrémité carboxy-terminale, d’un motif peptidique impliqué dans l’interaction avec NEMO (Figure 1). Du fait de cette forte homologie structurale, IKK-1 et IKK-2 ont été considérées pendant très longtemps comme ne jouant qu’un rôle catalytique quelque peu redondant. Une série de publications récentes montre que chacune d’entre elles accomplit, en réalité, une tâche extrêmement spécifique au sein d’IKK… et en dehors. L’invalidation des gènes IKK-1 et IKK-2 chez la souris entraîne deux phénotypes bien distincts. Les souris invalidées pour IKK-2 ne survivent pas au-delà du stade embryonnaire E14,5 en raison d’une apoptose massive au niveau du foie [5-7]. Ce phénotype est également observé avec des souris invalidées pour relA, une des sous-unités de NF-κB, ou des souris mâles invalidées pour NEMO, la sous-unité régulatrice de IKK. De plus, dans les cellules invalidées pour IKK-2, on observe un défaut sévère d’activation de NF-κB en réponse aux cytokines pro-inflammatoires comme l’IL-1 ou le TNF. Ces résultats confirment donc le rôle essentiel joué par IKK-2 dans la voie NF-κB. Les souris invalidées pour IKK-1 présentent un phénotype tout à fait différent [8-10]. Elles survivent jusqu’à la naissance mais souffrent d’une altération majeure au niveau de l’épiderme. Une hyperprolifération incontrôlée des kératinocytes donne aux souris un aspect engoncé et c’est à peine si l’on peut distinguer leurs membres, qui sont en fait parfaitement développés, tant la peau est épaisse. Il est surprenant de constater que NF-κB est normalement activé en réponse aux cytokines pro-inflammatoires. Cela indique donc que, au moins …
Appendices
Références
- 1. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann Rev Immunol 2000; 18: 621-63.
- 2. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 1997; 388: 548-54.
- 3. Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 1997; 278: 860-6.
- 4. Israël A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol 2000; 10: 129-33.
- 5. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 1999; 284: 321-5.
- 6. Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 1999; 10: 421-9.
- 7. Li ZW, Chu W, Hu Y, et al. The IKK-β subunit of IκB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 1999; 189: 1839-45.
- 8. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of the IκB kinase. Science 1999; 284: 316-20.
- 9. Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKα. Science 1999; 284: 313-6.
- 10. Li Q, Lu Q, Hwang JY, et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999; 13: 1322-8.
- 11. Hu Y, Baud V, Oga T, Kim K, Kazuhiko Y, Karin M. IKK controls formation of the epidermis independently of NF-κB via a differentiation inducing factor. Nature 2001; 410: 710-4.
- 12. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 2001; 293: 1495-9.
- 13. Yin L, Wu L, Wesche H, et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 2001; 291: 2162-7.
- 14. Ling L, Cao Z, Goeddel DV. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 1998; 95: 3792-7.
- 15. Xiao G, Harhaj EW, Sun SC. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol Cell 2001; 7: 401-9.
- 16. Shinkura R, Kitada K, Matsuda F, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κB-inducing kinase. Nat Genet 1999; 22: 74-7.
- 17. Cao Y, Bonizzi G, Seagroves TN, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001; 107: 763-75.
- 18. Pasparakis M, Courtois G, Hafner M, et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002; 417: 861-6.
- 19. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 2000; 405: 466-72.
- 20. Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol Cell 2000; 5: 981-92.