Abstracts
Abstract
The goal of science education is usually meant to develop students’ basic knowledge, skills, and scientific attitudes as stated in many countries’ curriculum documents, with little consideration of what backgrounds students bring into the classroom. A cultural approach to education has challenged this universal goal of science education. This paper provides a cultural analysis of conceptual change and recommends an argument approach to teaching for conceptual advancement. It argues that the outcome of classroom discourse cannot be oriented to be a replacement of students’ intuitive conceptions with scientific notions, rather coexistence between scientific understanding and culture/experience-based views is considered to be a more reasonable and realistic goal.
Résumé
Le but de l’enseignement des sciences, tel que défini dans les programmes d’enseignement de plusieurs pays, est habituellement de développer les connaissances de base, compétences et attitudes scientifiques des élèves et ce, sans égard pour leur savoir préalable. Une approche culturelle à l’enseignement a bouleversé ce but universel de l’enseignement des sciences. Cet article analyse sur une base culturelle le changement conceptuel et recommande une approche argumentaire comme méthode éducative favorisant l’évolution conceptuelle. L’auteur y avance que les résultats des débats faits en classe ne peuvent être orientés pour reprogrammer les conceptions intuitives des élèves par des notions scientifiques. En fait, Zhou soutient qu’un but sensé et réaliste est une cohabitation de la compréhension scientifique et des points de vue personnels et culturels sur la science.
Download the article in PDF to read it.
Download
Appendices
Biographical note
GEORGE ZHOU is an Associate Professor at the Faculty of Education, University of Windsor. He received his PhD in science education from the University of Alberta and currently teaches undergraduate and graduate courses in science education and research methods. His research areas cover conceptual change, argument, and the use of technology in science teaching. In addition, he conducts research in technology integration with teacher education, and comparative and international education. He can be reached at gzhou@uwindsor.ca.
Bibliography
- Aikenhead, G. S. (1996). Science education: Border crossing into the subculture of science. Studies in Science Education, 27(1), 1-52.
- Aikenhead, G. S. (2001). Integrating western and aboriginal sciences: Cross-cultural science teaching. Research in Science Education, 31(3), 337-355.
- Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.
- Aikenhead, G. S., & Jegede, O. J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. Journal of Research in Science Teaching, 36(3), 269-287.
- Aikenhead, G.S., & Ogawa, M. (2007). Indigenous knowledge and science revisited. Cultural Studies of Science Education, 2, 539-591.
- American Association for the Advancement of Science (AAAS). (1990). Science for allAmericans. NY: Oxford University Press.
- Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Education Psychology, 84, 26-271.
- Bar, V., Zinn, B., & Rubin, E. (1997). Children’s ideas about action at a distance. International Journal of Science Education, 19(10), 1137-1157.
- Barbosa, R., Jofili, Z., & Watts, M. (2004). Cooperating in constructing knowledge: Case studies from chemistry and citizenship. International Journal of Science Education. 26(8), 935-949.
- Battiste, M. (Ed.). (2000). Reclaiming indigenous voice and vision. Vancouver, BC: University of British Columbia Press.
- Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in science Teaching, 27(5), 415-427.
- Bishop, R., & Glynn, T. (1999). Culture counts: Changing power relations in education. Palmerston North, NZ: Dunmore Press.
- Brandt, C. B. (2007). Epistemology and temporal/spatial orders in science education: A response to Aikenhead & Ogawa’s: Indigenous knowledge and science revisited. Cultural Studies of Science Education, 2, 599-605.
- Brandt, C. B. (2008a). Discursive geographies in science: Space, identity, and scientific discourse among indigenous women in higher education. Cultural Studies of Science Education, 3, 703-730.
- Brandt, C. B. (2008b). Scientific discourse in the academy: A case study of an American Indian undergraduate. Science Education, 92(5), 825-847.
- Carter, L. (2004). Thinking differently about cultural diversity: Using postcolonial theory to (re)read science education. Science Education, 88(6), 819-836.
- Carter, L. (2006). Postcolonial interventions within science education: Using postcolonial ideas to reconsider cultural diversity scholarship. Educational Philosophy and Theory, 38(5), 677-691.
- Carter, L. (2008a). Sociocultural influences on science education: Innovation for contemporary times. Science Education, 92(1), 165-181.
- Carter, L. (2008b). Globalization and science education: The implications of science in the new economy. Journal of Research in Science Teaching, 45(5), 617-633.
- Chang, C-Y., & Mao, S-L. (1999). The effects on students’ cognitive achievement when using the cooperative learning method in earth science classrooms. School Science and Mathematics, 99(7), 374-379.
- Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66-71.
- Cobern, W. W., & Loving, C. C. (2001). Defining “science” in a multicultural world: Implications for science education. Science Education, 85(1), 50 – 67.
- Costa, V. B. (1995). When science is “another world”: Relationships between worlds of family, friends, school, and science. Science Education, 79, 313–333.
- Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2/3), 109-128.
- Driver, R., & Erickson, G. (1983). Theories in action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10(1), 37-60.
- Driver, R., Guesne, E., & Tiberghien, A. (Eds.) (1985). Children’s ideas in science. Open University Press.
- Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312.
- Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science. London, UK: Routledge.
- Dweck, C. S., & Leggett, E. L. (1988). A social cognitive approach to motivation and personality. Psychological Review, 95(2), 256-273.
- Gauch, H. G. (2009). Science, worldviews, and education. Science and Education, 18(6/7), 667-695.
- Geertz, C. (1973). The interpretation of culture. New York, NY: Basic Books.
- Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability and metacognition. Educational Research, 42(2), 119-139.
- Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61-98.
- Giroux, H. (1992). Border crossings: Culture workers and the politics of education. New York, NY: Routledge.
- Gregoire, M. (2003). Is it a challenge or a threat? A dual-process model of teachers’ cognition and appraisal process during conceptual change. Educational Psychology Review, 15(2), 147–179.
- Harding, S. (1998). Multiculturalism, postcolonialism, feminism: Do they require new research epistemologies? Australian Educational Researcher, 25(1), 37 – 51.
- Helm, H. (1980). Misconceptions in physics amongst South African students. Physics Education, 15, 92-105.
- Hewson, P. W., & Hewson, M. G. A’B (1988). An appropriate conception of teaching science: A view from studies of science learning. Science Education, 72(5), 597-614.
- Hodson, D. (1992). Towards a framework for multicultural education. Curriculum, 13, 15–18.
- Hollenberg, D., & Muzzin, L. (2010). Epistemological challenges to integrative health care: An anti-colonial perspective on the combination of biomedicine with complementary/alternative medicine. Health Sociology Review, 19(1), 34-56.
- Hughes, C. (2002). Beyond the post-structuralist-modern impasse: The woman returner as ‘exile’ and ‘nomad.’ Gender and Education, 14(4), 411-424.
- Hutchinson, I. (2003). Science: Christian and natural. Perspectives on Science and Christian Faith, 55(2), 72-79.
- Kuhn, D. (1993). Science as argument. Science Education, 77, 319-337.
- Kuhn, T. (1970). The structure of scientific revolutions. Chicago, Il: Chicago University Press.
- Jegede, O. (1995). Collateral learning and the eco-cultural paradigm in science and mathematics education in Africa. Studies in Science Education, 25, 97–137.
- Jegede, O. (1997). School science and the development of scientific culture: A review of contemporary science education in Africa. International Journal of Science Education, 19, 1–20.
- Larson, J. O. (1995, April). Fatima’s rules and other elements of an unintended chemistry curriculum. Paper presented at the American Educational Research Association annual meeting, San Francisco, CA.
- Lee, O. (2001). Culture and language in science education: What do we know and what do we need to know? Journal of Research in Science Teaching, 38(5), 499 – 501.
- Lee, O. (2003). Equity for linguistically and culturally diverse students in science education: A research agenda. Teachers College Record, 105(3), 465 – 489.
- Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 694-722). New York, NY: Routledge.
- Loughran, J., & Derry, N. (1997). Researching teaching for understanding: The students’ perspective. International Journal of Science Education, 19, 925-938.
- Matthews, M. (1994). Science teaching: The role of history and philosophy of science. New York, NY: Routledge.
- McCloskey, M. (1983). Intuitive physics. Scientific American, 248, 114-122.
- National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press.
- Nolen, S. (1988). Reasons for studying: Motivational orientations and study strategies. Cognition and Instruction, 5, 269-287.
- Nolen, S. B. (1996). Why study? How reasons for learning influence strategy selection. Educational Psychology Review,8(4), 335-355.
- Nussbaum, J., & Novick, S. (1981). Brainstorming in the classroom to invent a model: A case study. School Science Review, 62(221), 771-778.
- O’Loughlin, M. (1992). Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning. Journal of Research in Science Teaching, 29(8), 791-820.
- Osborne, J. (2001). Promoting argument in the science classroom: A rhetorical perspective. Canadian Journal of Science, Mathematics and Technology Education. 1(3), 271-290.
- Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
- Osborn, R., & Freyberg, P. (1985). Learning in science: The implications of children’s science. Auckland, NZ: Heinemann.
- Paris, S. G., & Winograd, P. (1990). How metacognition can promote academic learning and instruction. In B. F. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (pp. 11-52). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Piaget, J. (1970). Genetic epistemology. New York: Columbia University Press.
- Piaget, J. (1973). To understand is to invent. New York: Viking Press.
- Pintrich, P. R., & De Groot, E. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40.
- Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2): 167-99.
- Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
- Redish, E. F., & Steinberg, R. N. (1999). Teaching physics: Figuring out what works. Physics Today, 52, 24-30.
- Sheehy, M., & Leander, K. M. (2004). Introduction. In K. M. Leander & M. Sheehy (Eds.), Spatializing literacy research and practice (pp. 1-14). New York, NY: Peter Lang.
- Siegel, H. (2002). Multiculturalism, universalism, and science education: In search of common ground. Science Education, 86, 803-820.
- Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28 (2-3), 235-260.
- Sinatra, G. M. (2005). The ‘’warming trend’’ in conceptual change research: The legacy of Paul R. Pintrich. EducationalPsychologist,40(2), 107-115.
- Sinatra, G. M., & Pintrich, P. R. (2003). The role of intentions in conceptual change learning. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 1-18). Mahwah, NJ: Lawrence Erlbaum.
- Smith, E. L., Blakeslee, T. D., & Anderson, C. W. (1993). Teaching strategies associated with conceptual change learning in science. Journal of Research in Science Teaching, 30(2), 111-126.
- Smith, L. T. (1999). Decolonizing methodologies: Research and indigenous peoples. London, UK: Zed Books.
- Snively, G., & Corsiglia, J. (2001). Discovering indigenous science: Implications for science education. ScienceEducation, 85(1), 6-34.
- Stanley, W. B., & Brickhouse, N. W. (2001). Teaching sciences: The multicultural question revisited. ScienceEducation, 85(1), 35-49.
- Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
- Vosniadou, S. (1999). Conceptual change research: State of the art and future directions. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.). New perspectives on conceptual change (pp. 3-13). New York, NY: Pergamon Press.
- Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
- Watson, B., & Konicek, R. (1990). Teaching for conceptual change: Confronting children’s experience. Phi Delta Kappan, 71(9), 680-685.
- Wentzel, K. R. (1991). Social and academic goals at school: Motivation and achievement in context. In M. L. Maehr & P. R. Pintrich (Eds.), Advances in motivation and achievement (Vol. 7, pp.185-212). Greenwich, CT: JAI Press.
- Zhou, G., Nocente, N., & Brouwer, W. (2008). Understanding student cognition from an analysis of their preconceptions in physics. Alberta Journal of Educational Research,54(1), 14-29.
Appendices
Note biographique
George Zhou est professeur agrégé à la Faculté de l’éducation de l’Université de Windsor. Il a obtenu son doctorat en enseignement des sciences à l’Université de l’Alberta et enseigne présentement des cours portant sur l’enseignement des sciences et les méthodes de recherche aux étudiants de premier et deuxième cycle. Ses domaines de recherche comprennent les changements conceptuels, les débats et l’utilisation de la technologie dans l’enseignement des sciences. Par ailleurs, il dirige des recherches sur l’intégration de la technologie à la formation des enseignants ainsi que sur l’éducation comparée et internationale. Il est possible de communiquer avec lui à gzhou@uwindsor.ca.