Abstracts
Abstract
We develop a conceptual framework to examine the potential impact of artificial intelligence (AI) and its associated technologies on five dimensions of management education. Through the analysis of the mission statement of 785 educational technology startups, we identify five mechanisms through which AI may benefit and transform the field of management education in a post-COVID-19 world. Our research is one of the first to propose a global and comprehensive framework to advance our understanding of the impact of a disruptive technology on the traditional and immutable field of higher-education, and more particularly on management education.
Keywords:
- Artificial intelligence,
- edtechs,
- management education
Résumé
Nous développons un cadre conceptuel pour examiner l’impact potentiel de l’intelligence artificielle (IA) et de ses technologies associées sur cinq dimensions de l’enseignement du management. Grâce à l’analyse des déclarations de mission de 785 startups de technologie éducative, nous identifions cinq mécanismes par lesquels l’IA peut bénéficier et transformer le domaine de l’enseignement de la gestion dans un monde post-COVID-19. Notre recherche est l’une des premières à proposer un cadre théorique global pour mieux comprendre l’impact d’une technologie disruptive dans un domaine traditionnel et immuable de l’enseignement supérieur, et plus particulièrement sur l’enseignement du management.
Mots-clés :
- Intelligence artificielle,
- edtechs,
- enseignement du management
Resumen
Desarrollamos un esquema conceptual para examinar el impacto potencial de la inteligencia artificial (IA) y sus tecnologías asociadas en cinco dimensiones de la educación en gestión. A través del análisis de las declaraciones de misión de 785 empresas emergentes de tecnología educativa, identificamos cinco mecanismos a través de los cuales la IA puede beneficiar y transformar el campo de la educación en gestión en un mundo posterior a COVID-19. Nuestra investigación es una de las primeras en proponer un esquema global para comprender mejor el impacto de una tecnología disruptiva en el campo tradicional de la educación superior, y más concretamente en gestión.
Palabras clave:
- Inteligencia artificial,
- edtechs,
- educación en gestión
Appendices
Bibliography
- Al-Atabi, M., & DeBoer, J. (2014). Teaching entrepreneurship using massive open online course (MOOC). Technovation, 34(4), p. 261-264.
- Agrawal A, Gans JS, Goldfarb A (2017). What to expect from artificial intelligence. MIT Sloan Manag Rev 58: p. 23-26
- Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.
- Alexandre, L. (2017). La guerre des intelligences. Paris: JC Lattès.
- Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired magazine, 16(7), p. 16-07.
- Arendt, H. (1971). La crise de l’éducation [1958]. In H. Arendt, La crise de la culture (p. 223-252). Paris: Gallimard (Folio-Essais, 113).
- Bart Baetz, C. K., Mark C. (1998). The relationship between mission statements and firm performance: An exploratory study. Journal of management studies, 35(6), p. 823-853.
- Barnes, S. J. (2020). Information management research and practice in the post-COVID-19 world. International Journal of Information Management, p. 102-175.
- Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), p. 662-679.
- Boyd, R. L., & Pennebaker, J. W. (2017). Language-based personality: a new approach to personality in a digital world. Current Opinion in Behavioral Sciences, 18, p. 63-68.
- Bromley, P., & Powell, W. W. (2012). From smoke and mirrors to walking the talk: Decoupling in the contemporary world. Academy of Management annals, 6(1), p. 483-530.
- Brown, J. P. (2015). Complexities of digital technology use and the teaching and learning of function. Computers & Education, 87, p. 112-122.
- Bryant (2017). Everything Depends on the Data. EDUCAUSE Review (Article published online), https://er.educause.edu/articles/2017/1/everything-depends-on-the-data.
- Calderón, A., & Ruiz, M. (2015). A systematic literature review on serious games evaluation: An application to software project management. Computers & Education, 87, p. 396-422.
- Carroll, C. A., & Garavalia, L. S. (2002). Gender and racial differences in select determinants of student success. American Journal of Pharmaceutical Education, 66(4), p. 382-387.
- Cavanaugh, J. M., Giapponi, C. C., & Golden, T. D. (2016). Digital technology and student cognitive development: The neuroscience of the university classroom. Journal of Management Education, 40(4), p. 374-397.
- Cavanaugh, J. (2017). Alchemy, Innovation, and Learning, in 2025. EDUCAUSE Review 52(1), https://er.educause.edu/articles/2017/1/alchemy-innovation-and-learning-in-2025
- Christensen, C. M. & Raynor, M. E. (2003). The innovator’s solution: Creating and sustaining successful growth. Boston: Harvard Business School Press.
- Cirulli, F., Elia, G., Lorenzo, G., Margherita, A., & Solazzo, G. (2016). The use of MOOCs to support personalized learning: An application in the technology entrepreneurship field. Knowledge Management & E-Learning, 8(1), p. 109.
- Cooke, R., Barkham, M., Audin, K., & Bradley, M. (2004). How social class differences affect students’ experience of university. Journal of Further and Higher Education, 28(4), p. 407-421.
- Crilly, D., Zollo, M., & Hansen, M. T. (2012). Faking it or muddling through? Understanding decoupling in response to stakeholder pressures. Academy of Management Journal, 55(6), p. 1429-1448.
- Daniel, B. (2015). Big Data and analytics in higher education: opportunities and challenges. British Journal of Educational Technology, 46(5), p. 904-920.
- De Waard, I., Abajian, S., Gallagher, M. S., Hogue, R., Keskin, N., Koutropoulos, A., & Rodriguez, O. C. (2011). Using mLearning and MOOCs to understand chaos, emergence, and complexity in education. The International Review of Research in Open and Distributed Learning, 12(7), p. 94-115.
- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., … & Galanos, V. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, p. 101-994.
- Droll, A., Khan, S., Ekhlas, E., & Tanev, S. (2017). Using artificial intelligence and web media data to evaluate the growth potential of companies in emerging industry sectors. Technology Innovation Management Review, 7(6).
- Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210).
- Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14 (4), p. 532-550.
- Ferràs-Hernández, X. (2018). The future of management in a world of electronic brains. Journal of Management Inquiry, 27(2), p. 260-263.
- Fournier, S. (2019). L’implication des enseignants: une des clés possible de la performance éducative. Management international, 23(3), p. 45-55.
- Fox, J., Pittaway, L., & Uzuegbunam, I. (2018). Simulations in Entrepreneurship Education: Serious Games and Learning Through Play. Entrepreneurship Education and Pedagogy, 1(1), p. 61-89.
- Giraudon, G., Guitton, P., Romero, M., Roy, D., & Viéville, T. (2020). Éducation et numérique, Défis et enjeux. Inria.
- Glaser, B., & Strauss, A. (1967). The discovery of grounded theory. Chicago: Aldine.
- Grimes, M. G., Williams, T. A., & Zhao, E. Y. (2019). Anchors aweigh: The sources, variety, and challenges of mission drift. Academy of Management Review, 44(4), p. 819-845.
- Grimmer, J. (2015). We are all social scientists now: how big data, machine learning, and causal inference work together. PS: Political Science & Politics, 48(1), p. 80-83.
- Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life—How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? International Journal of Information Management, p. 102-183.
- Jabbouri, R., Truong, Y., Schneckenberg, D., & Palmer, M. (2019). Institutional means-ends decoupling work in industrial R&D project implementation. Industrial Marketing Management, 80, p. 296-311.
- Joksimović, S., Gašević, D., Loughin, T. M., Kovanović, V., & Hatala, M. (2015a). Learning at distance: Effects of interaction traces on academic achievement. Computers & Education, 87, p. 204-217.
- Joksimović, S., Gašević, D., Kovanović, V., Riecke, B. E., & Hatala, M. (2015b). Social presence in online discussions as a process predictor of academic performance. Journal of Computer Assisted Learning, 31(6), p. 638-654.
- Jones, N., & Lau, A. M. S. (2010). Blending learning: widening participation in higher education. Innovations in Education and Teaching International, 47(4), p. 405-416.
- Jordan J (2017). Challenges to large-scale digital organization: the c Uber. J Organ Des 6: p. 1-12.
- Kaenzig, R., Hyatt, E., & Anderson, S. (2007). Gender differences in college of business educational experiences. Journal of Education for Business, 83(2), p. 95-100.
- Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), p. 139-172.
- Keding, C. (2020). Understanding the interplay of artificial intelligence and strategic management: four decades of research in review. Management Review Quarterly, p. 1-44.
- Klemm, M., Sanderson, S., & Luffman, G. (1991). Mission statements: Selling corporate values to employees. Long range planning, 24(3), p. 73-78.
- Konecki, K. T. (2008). Grounded theory and Serendipity. Natural history of a research. Qualitative sociology review, 4(1).
- Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological methods, 21(4), p. 493.
- Lambrecht, A., & Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Management science, 65(7), p. 2966-2981.
- Lee, T.L., Mitchell, T.R., & Sablynski, C.J. (1999). Qualitative research in organizational and vocational psychology: 1979-1999. J. Vocat. Behav. 55, p. 161-187.
- Manero, B., Torrente, J., Serrano, Á., Martínez-Ortiz, I., & Fernández-Manjón, B. (2015). Can educational video games increase high school students’ interest in theatre? Computers & Education, 87, p. 182-191.
- Maritz, A., Brown, C., & Shieh, C. J. (2010). A blended learning approach to entrepreneurship education. Scientific economics journal: special edition, actual problems of economics, 12(2), p. 83-93.
- Martín-SanJosé, J. F., Juan, M. C., Seguí, I., & García-García, I. (2015). The effects of computer-based games and collaboration in large groups vs. collaboration in pairs or traditional methods. Computers & Education, 87, p. 42-54.
- McAndrew, P., Scanlon, E., & Clow, D. (2010). An open future for higher education. Educause Quarterly, 33(1).
- Mazzei MJ, Noble D (2017). Big data dreams: a framework for corporate strategy. Bus Horiz 60: p. 405-414.
- Passarelli, A. (2014). Harnessing the power of a Massive Open Online Course (Mooc): inspiring leadership through emotional intelligence. Academy of Management Learning & Education, 13(2), 298-300.
- Pink, D. H. (2006). A whole new mind: Why right-brainers will rule the future. Penguin.
- Prinsloo, P., Archer, E., Barnes, G., Chetty, Y., & Van Zyl, D. (2015). Big (ger) data as better data in open distance learning. The International Review of Research in Open and Distributed Learning, 16(1).
- Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation—augmentation paradox. Academy of Management Review, 46(1), p. 192-210.
- Rancière, J. (1991). The ignorant schoolmaster (Vol. 1). Stanford, CA: Stanford University Press.
- Redfield, C. L., & Larose, G. (2010). Intelligent Tutoring and Mentoring for Effective Learning. EDUCAUSE Quarterly, 33(1).
- Ridder, H. G., Hoon, C., & McCandless Baluch, A. (2014). Entering a dialogue: Positioning case study findings towards theory. British Journal of Management, 25(2), p. 373-387.
- Rogers, E. M. (2010). Diffusion of innovations: Simon and Schuster.
- Sarasvathy, S. D. (2003). Entrepreneurship as a science of the artificial. Journal of Economic Psychology, 24(2), p. 203-220.
- Schallmo, D., Williams, C. A., & Lohse, J. (2019). Digital Strategy—Integrated Approach and Generic Options. International Journal of Innovation Management, 23(08), 1940005.
- Seely Brown, J., & Adler, R. P. (2008). Open education, the long tail, and learning 2.0. Educause review, 43(1), p. 16-20.
- Serres, M. (2014). Thumbelina: The culture and technology of millennials. Rowman & Littlefield International.
- Severiens, S. E., & ten Dam, G. T. M. (1994). Gender differences in learning styles: a narrative review and a quantitative meta-analysis. Higher Education, 27, p. 487-501
- Shepherd, D. A., & Sutcliffe, K. M. (2011). Inductive top-down theorizing: A source of new theories of organization. Academy of Management Review, 36(2), p. 361-380.
- Shi, S., & Morrow, B. V. (2006). E-Conferencing for Instruction: What Works?. Educause quarterly, 29(4), p. 42-49.
- Shneiderman, B. (2020). “Human-centered artificial intelligence: Reliable, safe & trustworthy,” Int. J. Human Comput. Interact., Vol. 36, N° 6, p. 495-504.
- Sidhu, J. (2003). Mission Statements: : Is it Time to Shelve Them? European Management Journal, 21(4), p. 439-446.
- Shulman, D. (2016). Personalized learning: Toward a grand unifying theory. EDUCAUSE Review, 51(2), p. 10.
- Stevenson, K., & Zweier, L. (2011). Creating a learning flow: a hybrid course model for high-failure-rate math classes. EDUCAUSE Review, 34(4), N° 4.
- Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage Publications.
- Toutain, O., Mueller, S., & Bornard, F. (2019). Decoding entrepreneurship education ecosystems (EEE): A cross-European study in primary, secondary schools and vocational training. Management international/International Management/Gestiòn Internacional, 23(5), p. 47-65.
- Tritz, R. (2015). New Technologies, Pedagogies, and Curriculum: A Practical Perspective. EDUCAUSE Review, https://er.educause.edu/articles/2015/8/new-technologies-pedagogies-and-curriculum-a-practical-perspective
- Yates, H., Chamberlain, B., & Hsu, W. H. (2017). A spatially explicit classification model for affective computing in built environments. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 100-104). IEEE.
- Watters, A. (2017). Memory machines & collective memory: How we remember the history of the future of technological change. Educause Review, p. 37-50.
- Wijen, F. (2014). Means versus ends in opaque institutional fields: Trading off compliance and achievement in sustainability standard adoption. Academy of Management Review, 39(3), p. 302-323.