Abstracts
Abstract
Emanating from a family of statistical techniques used for the analysis of multivariate data to measure latent variables and their interrelationships, structural equation modeling (SEM) is briefly introduced. The basic tenets of SEM, the principles of model creation, identification, estimation and evaluation are outlined and a four-step procedure for applying SEM to test an evidence-based model of eating disorders (transdiagnostic cognitive-behavioural theory; Fairburn, Cooper, & Shafran, 2003) using previously obtained data on eating psychopathology within an athletic population (Shanmugam, Jowett, & Meyer, 2011) is presented and summarized. Central issues and processes underpinning SEM are discussed and it is concluded that SEM offers promise for testing complex, integrated theoretical models and advances of research within the social sciences, with the caveat that it should be restricted to situations wherein there is a pre-existing substantial base of empirical evidence and a strong conceptual understanding of the theory undergirding the research question.
Keywords:
- structural equation modeling,
- confirmatory factor analysis,
- measurement model,
- structural model
Résumé
Cet article propose une brève introduction à la modélisation par équations structurelles (MES), une technique statistique d’analyse de données multivariées qui vise à mesurer des variables latentes et leurs interrelations. Les préceptes de la MES et les principes de création, d’identification, d’estimation et d’évaluation de modèle y sont décrits. Son utilisation est illustrée par la présentation d’une procédure d’application de la MES en quatre étapes qui teste un modèle fondé sur les données probantes des troubles de l’alimentation (théorie cognitive-comportementale transdiagnostique; Fairburn, Cooper, & Shafran, 2003) en utilisant les données obtenues précédemment sur les troubles alimentaires au sein d’une population sportive (Shanmugam, Jowett, & Meyer, 2011). Des questions centrales et les processus qui sous-tendent la MES sont discutés, et il est conclu que la MES est une technique très prometteuse pour tester les modèles théoriques intégrés complexes et les avancées de la recherche en sciences sociales, tant que son utilisation est limitée aux situations où il existe une importante base de données probantes ainsi qu’une solide compréhension conceptuelle de la théorie sur laquelle repose la question de recherche.
Mots-clés :
- modélisation par équations structurelles,
- analyse factorielle confirmatoire,
- modèle de mesure,
- modèle structurel
Resumo
Proveniente de uma família de técnicas estatísticas utilizadas na análise de dados multivariados para medir variáveis latentes e suas inter-relações, apresenta-se sumariamente a modelagem de equações estruturais (MES). Neste sentido, são descritos os princípios básicos da MES, os princípios da criação, identificação, estimativa e avaliação de modelos e são apresentadas e resumidas as quatro etapas de um procedimento para a aplicação da MES para testar um modelo baseado em evidências de transtornos alimentares (teoria cognitivo-comportamental transdiagnóstica; Fairburn, Cooper, & Shafran, 2003), utilizando os dados anteriormente obtidos em transtornos alimentares dentro de uma população de atletas (Shanmugam, Jowett, & Meyer, 2011). As questões centrais e os processos subjacentes à MES são discutidos, concluindo-se que a aplicação da MES é bastante promissora para testar modelos teóricos integrados e complexos e para avanços da investigação no âmbito das ciências sociais, com a ressalva de que deve restringir-se a situações em que pré-exista uma base substancial de evidências empíricas e uma forte compreensão conceptual da teoria que sustenta a questão de investigação.
Palavras chaves:
- modelagem de equações estruturais,
- análise fatorial confirmatória,
- modelo de medição,
- modelo estrutural
Appendices
References
- Abuckle, J. L. (1995-2011). AMOS 20.0 User’s Guide. Crawfordville, FL: AMOS Development Corporation.
- Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9, 78–102. doi: 10.1207/S15328007SEM0901_5.
- Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumaker (Eds.), New developments and techniques in structural equation modeling (pp. 269-296). Mahwah, NJ: Lawrence Erlbaum Associates.
- Bentler, P. M. (1980). Multivariate analyses with latent variables: Causal modelling. Annual Review of Psychology, 31, 419-456. doi: 10.1146/annurev.ps.31.020180.002223.
- Bentler, P. M. (2006). EQS: Structural equations program manual. Encino, CA: Multivariate Software Inc. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and the goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606. doi: 10.1037// 0033-2909.88.3.588.
- Bentler, P. M., & Chou, C-P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117. doi: 10.1177/0049124187016001004.
- Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage. doi: 10.1177/0049124192021002005.
- Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley. doi: 10.1002/9781118619179.
- Bollen, K. A., & Long, J. S. (1993). Testing Structural Equation Models. Newbury Park, CA: Sage.
- Brennan, K. A., Clark, C. L., & Shaver, P. R. (1998). Self-report measurement of adult romantic attachment: An integrative overview. In J. A. Simpson & W. S. Rholes (Eds.), Attachment theory and close relationships (pp. 46-76). New York, NY: Guildford Press.
- Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and programming. Mahwah, NJ: Laurence Erlbaum Associates.
- Byrne, B. M. (2010). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (2nd ed.). New York, NY: Routledge Academic.
- Cattell, R. B., & Burdsal, C. A. (1975). The radial parcel double factoring design: A solution to item-vs.-parcel controversy. Multivariate Behavioral Research, 10, 165-179. doi: 10.1207/s15327906mbr1002_3.
- Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233-255. doi: 10.1207/S15328007SEM0902_5.
- Collins, N. L., & Read, S. J. (1990). Adult attachment, working models and relationship quality in dating couples. Journal of Personality and Social Psychology, 58, 644–663. doi: 10.1037/0022-3514.58.4.644.
- Derogatis, L. R. (2000). Symptom Checklist-90-Revised. In Handbook of Psychiatric Measures. Washington, DC: American Psychiatric Association.
- Dunkley, D. M., Blankstein, K. R., Masheb, R. M., & Grilo, C. M. (2006). Personal standards and evaluative concerns dimensions of ‘clinical’ perfectionism: A reply to Shafran et al. (2002, 2003) and Hewitt et al. (2003). Behaviour Research and Therapy, 44, 63-84. doi: 10.1016/j.brat.2004.12.004.
- Dunkley, D. M., & Grilo, C. M. (2007). Self-criticism, low self-esteem, depressive symptoms and over-evaluation of shape and weight in binge eating disorder patients. Behaviour Research and Therapy, 45, 139-149. doi: 10.1016/j.brat.2006.01.017.
- Dunkley, D. M., Zuroff, D. C., & Blankstein, K. R. (2003). Self-critical perfectionism and daily affect: Dispositional and situational influences on stress and coping. Journal of Personality and Social Psychology, 84, 234–252. doi: 10.1037/0022-3514.84.1.234.
- Fairburn, C. G., & Beglin, S. J. (2008). Eating Disorders Examination Questionnaire (EDE-Q 6.0). In C. G. Fairburn (Ed.), Cognitive behaviour therapy and eating disorders (pp. 309-313). New York, NY: The Guildford Press.
- Fairburn, C. G., Cooper, Z., & Shafran, R. (2003). Cognitive behaviour therapy for eating disorders: A “transdiagnostic” theory and treatment. Behaviour Research and Therapy, 41, 509-528.
- Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, 291-314. doi: 10.1111/j.1744-6570.1986.tb00583.x.
- Frost, R. O., Marten, P., Lahart, C., & Rosenblate, R. (1990). The dimensions of perfectionism. Cognitive Therapy and Research, 14, 449-468. doi: 10.1007/BF01172967.
- Hau, K. T., & Marsh, H. W. (2004). The use of item parcels in structural equation modeling: Non-normal data and small sample sizes. British Journal of Mathematical Statistical Psychology, 57, 327–351. doi: 10.1111/j.2044-8317.2004.tb00142.x.
- Hall, R. J., Snell, A. F., & Foust, M. S. (1999). Item parceling strategies in SEM: Investigating the subtle effects of unmodeled secondary constructs. Organizational Research Methods, 2, 233-256. doi: 10.1177/109442819923002.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression based approach. New York, NY: The Guilford Press.
- James, L. R., Mulaik, S. A., & Brett, J. M. (1982). Causal Analysis: Assumptions, Models, and Data. Beverly Hills, CA: Sage.
- Jowett, S. (2009). Validating the coach athlete relationship measures with the nomological network. Measurement in Physical Education and Exercise Science, 13, 34-51. doi: 10.1080/10913670802609136.
- Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL: Scientific Software International.
- Karadag, E. (2012). Basic features of structural equation modeling and path analysis with its place and importance in educational research methodology. Bulgarian Journal of Science and Education Policy (BJSEP), 6, 194-212.
- Kishton, J. M., & Widaman, K. F. (1994). Unidimensional versus domain representative parcelling of questionnaire items: An empirical example. Educational and Psychological Measurement, 54, 757-765. doi: 10.1177/0013164494054003022.
- Kline, R. B. (2005). Principles and practice of structural equation modeling. New York, NY: The Guilford Press.
- Lei, P. W., & Wu, Q. (2007). An NCME Instructional Module on Introduction to Structural Equation Modeling: Issues and Practical Considerations. Educational Measurement, Issues and Practice, 26, 33-44.
- Leveridge, M., Stoltenberg, C. D., & Beesley, D. (2005). Relationship of attachment style to personality factors and family interaction patterns. Contemporary Family Therapy, 27, 577-597. doi: 10.1007/s10591-005-8243-9.
- Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to Parceling and CFA Tests 9 parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151-173.
- McIntosh, V., Bulik, C., McKenzie, J., Luty, S., & Jordan, J. (2000). Interpersonal psychotherapy for anorexia nervosa. The International Journal of Eating Disorders, 27, 125–139. doi: 10.1002/(SICI)1098-108X(200003)27:2%3C125::AID-EAT1%3E3.0.CO;2-4.
- Marsh, H. W. (2007). Application in confirmatory factor analysis and structural equation modeling in sport and exercise psychology. In G. Tenenbaum & R. C. Eklund (Eds.), Handbook of sport psychology (pp. 774-798). New York, NY: Wiley. doi: 10.1002/9781118270011.ch35.
- Marsh, H. W. & Hau, K-T. (1999). Confirmatory factor analysis: Strategies for small sample sizes. In R.H. Hoyle (Eds.), Statistical strategies for small sample research (pp. 251-306). Newbury, CA: Sage.
- Marsh, H. W., Hau, K-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181-220. doi: 10.1207/s15327906mbr3302_1.
- Marsh, H. W., Hau, K-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralising Hu & Bentler’s (1999) findings. Structural Equation Modeling, 11, 320-341.
- Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105, 430–435. doi: 10.1037//0033-2909.105.3.430.
- Muthén, L. K., & Muthén, B. O. (1998-2010). Mplus User’s Guide. Sixth Edition. Los Angeles, CA: Muthén & Muthén.
- Nasser, F., & Wisenbaker, J. (2003). A Monte Carlo study investigating the impact of item parcelling on measures of fit in confirmatory factor analysis. Educational and Psychological Measurement, 63, 729–757. doi: 10.1177/0013164403258228.
- Nasser-Abu Alhija, F., & Wisenbaker, J. (2006). A Monte Carlo study investigating the impact of item parceling strategies on parameter estimates and their standard errors in CFA. Structural Equation Modeling, 13, 204–228.
- Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731. doi: 10.3758/BF03206553.
- Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and re-sampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879-891. doi: 10.3758/BRM.40.3.879.
- Pugesek, B. H., Tomer, A., & von Eye, A. (2003). Structural Equation Modeling: Applications in ecological and evolutionary biology. Cambridge, UK: Cambridge University Press.
- Ramacciotti, A., Sorbello, M., Pazzagli, A., Vismara, L., Mancone, A., & Pallanti, S. (2001). Attachment processes in eating disorders. Eating and Weight Disorders, 6, 166-170. doi: 10.1007/BF03339766.
- Reichardt, C. S. (2002). The priority of just-identified, recursive models. Psychological Methods, 7, 307-315. doi: 10.1037/1082-989X.7.3.307.
- Rosenberg, M. (1965). Society and the adolescent self image. Princeton, NJ: Princeton University Press.
- Russell, D. W., Kahn, J. H., Spoth, R., & Altmaier, E. M. (1998). Analyzing data from experimental studies: A latent variable structural equation modeling approach. Journal of Counseling Psychology, 45, 18–29. doi: 10.1037/0022-0167.45.1.18.
- Schumacker, R. E. & Lomax, R. G. (2004). A beginner’s guide to Structural Equation Modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
- Shanmugam, V., Jowett, S., & Meyer, C. (2011). Application of the transdiagnostic cognitive-behavioral model of eating disorders to the athletic population. Journal of Clinical Sport Psychology, 5, 166-191.
- Shea, M. E., & Pritchard, M. E. (2007). Is self-esteem the primary predictor of disordered eating? Personality and Individual Differences, 42, 1527–1537. doi: 10.1016/j.paid.2006.10.026.
- Shipley, B. (2000). Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference. Cambridge, UK: Cambridge University Press.
- Stice, E., & Bearman, S. K. (2001). Body image and eating disturbances prospectively predicts increases in depressive symptoms in adolescent girls: A growth curve analysis. Developmental Psychology, 37, 597–607. doi: 10.1037//0012-1649.37.5.597.
- Stirling, A. E., & Kerr, G. A. (2006). Perfectionism and mood states among recreational and elite Athletes. Athletic Insight: The Online Journal of Sport Psychology, 8, 13-27.
- Teo, T., & Khine, M. S. (2009). Structural Equation Modeling in Educational Research: Concepts and Applications. Rotterdam, Netherlands: Sense Publishers.
- Thompson, B., & Melancon, J. (1996, November). Using item “testlets/parcels” in confirmatory factor analysis: An example using the PPDP-78. Paper presented at the annual meeting of the Mid-South Educational Research Association, Tuscaloosa, AL.
- Tomarken, A. J., & Waller, N. G. (2003). Potential problems with «well fitting» models. Journal of Abnormal Psychology, 112, 578-5. doi: 10.1037/0021-843X.112.4.578.
- Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1, 31-65. doi: 10.1146/annurev.clinpsy.1.102803.144239.
- Violato, C., & Hecker, K. G. (2007). How to use structural equation modeling in medical education research: A brief guide. Teaching and Learning in Medicine, 19, 362–371. doi: 10. 1080/10401330701542685.
- Weissman, A. N., & Beck, A. T. (1978, August/September). Development and validation of the Dysfunctional Attitude Scale: A preliminary investigation. Paper presented at the 86th Annual Convention of the American Psychological Association, Toronto, Ontario, Canada.
- Wright, S. S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–85.
- Yang, C., Nay, S., & Hoyle, R. H. (2010). Three approaches to using lengthy ordinal scales in structural equation models: Parceling, latent scoring, and shortening scales. Applied Psychological Measurement, 34, 122-142.
- Yuan, K-H., Bentler, P. M., & Kano, Y. (1997). On averaging variables in a CFA model. Behaviormetrika, 24, 71-83