Abstracts
Résumé
Cet article examine l'impact de l'intelligence artificielle (IA) sur le domaine de l'éducation, et en explore les avantages et les défis. Le recours à l'IA dans le secteur éducatif offre de nombreux avantages tels que l'automatisation des tâches administratives répétitives et la personnalisation des parcours d’apprentissage. Cependant, cela soulève des préoccupations éthiques quant à la protection des données individuelles et au risque de biais algorithmiques. En outre, nous abordons d’autres défis : ceux liés à l’opposition entre l'évaluation automatisée et l'évaluation humaine ainsi que les implications complexes de la reconnaissance faciale dans un contexte éducatif. Il est essentiel qu’une approche réfléchie et éthique dans le déploiement de l'IA en éducation soit pensée en soulignant la nécessité de principes éthiques précis et transparents, et d'une réflexion pédagogique approfondie. Nous préconisons l'utilisation d'outils IA open source pour favoriser la transparence et la conformité aux réglementations en vigueur.
Mots-clés :
- intelligence artificielle,
- IA open source,
- reconnaissance faciale,
- données personnelles,
- automatisation,
- personnalisation pédagogique,
- éducation,
- éthique
Abstract
This article examines the impact of artificial intelligence (AI) on the field of education and explores its benefits and challenges. The use of AI in the education sector offers many advantages such as the automation of repetitive administrative tasks and the personalisation of learning paths. However, this raises ethical concerns about the protection of personal data and the risk of creating algorithmic biases. In addition, we address other challenges: those related to the opposition between automated and human assessment as well as the complex implications of facial recognition in an educational context. It is essential that a considered and ethical approach to the deployment of AI in education is thought through, emphasising the need for clear and transparent ethical principles and careful pedagogical reflection. We recommend the use of open-source AI tools to promote transparency and compliance with current regulations.
Keywords:
- artificial intelligence,
- education,
- ethics,
- open source AI,
- facial recognition,
- personal data,
- automation,
- personalised teaching
Resumen
Este artículo examina el impacto de la inteligencia artificial (IA) en el ámbito de la educación y explora sus ventajas y retos. El uso de la IA en el sector educativo ofrece muchas ventajas, como la automatización de tareas administrativas repetitivas y la personalización de las vías de aprendizaje. Sin embargo, esto plantea problemas éticos sobre la protección de datos personales y el riesgo de sesgo algorítmico. Además, abordamos otros retos: los relacionados con la oposición entre la evaluación automatizada y la humana, así como las complejas implicaciones del reconocimiento facial en un contexto educativo. Es esencial que se diseñe un enfoque reflexivo y ético para el despliegue de la IA en la educación, haciendo hincapié en la necesidad de unos principios éticos claros y transparentes y de una cuidadosa reflexión pedagógica. Recomendamos el uso de herramientas de IA de código abierto para fomentar la transparencia y el cumplimiento de la normativa vigente.
Palabras clave:
- inteligencia artificial,
- educación,
- ética,
- IA de código abierto,
- reconocimiento facial,
- datos personales,
- automatización,
- enseñanza personalizada
Resumo
Este artigo analisa o impacto da inteligência artificial (IA) no domínio da educação e explora os seus benefícios e desafios. A utilização da IA no setor da educação oferece muitas vantagens, como a automatização de tarefas administrativas repetitivas e a personalização dos percursos de aprendizagem. No entanto, suscita preocupações éticas sobre a proteção dos dados pessoais e o risco de enviesamento algorítmico. Além disso, abordamos outros desafios: os relacionados com a oposição entre avaliação automatizada e humana, bem como as implicações complexas do reconhecimento facial num contexto educativo. É essencial refletir sobre uma abordagem ponderada e ética da utilização da IA na educação, sublinhando a necessidade de princípios éticos claros e transparentes e de uma reflexão pedagógica cuidadosa. Recomendamos a utilização de ferramentas de IA de fonte aberta para promover a transparência e o cumprimento da regulamentação atual.
Palavras chaves:
- inteligência artificial,
- educação,
- ética,
- IA de fonte aberta,
- reconhecimento facial,
- dados pessoais,
- automatização,
- ensino personalizado
Download the article in PDF to read it.
Download
Appendices
Bibliographie
- Ahajjam, T., Haidar, A., et Farhaoui, Y. (2021). Artificial Intelligence and Machine Learning to Predict Student Performance during the COVID-19. Procedia Comput Sci. (2021)184, 835-840. https://doi.org/10.1016/j.procs.2021.03.104
- Akyuz, Y. (2020). Effects of Intelligent Tutoring Systems (ITS) on Personalized Learning (PL). Creative Education, 11(6), 953-978. https://doi.org/10.4236/ce.2020.116069
- Alazemi, N. (2022). The impact of digital learning resources on developing the educational process for faculty members at the PAAET. Amazonia Investiga. 11(59). 54-63. https://doi.org/10.34069/AI/2022.59.11.5
- Anctil, D. (2023). L’éducation supérieure à l’ère de l’IA générative. Réflexion pédagogique. Pédagogie collégiale, 36(3). https://eduq.info/xmlui/bitstream/handle/11515/38833/Anctil-36-3-23.pdf
- Aubry, A., et Bourdin, B. (2016). Les tests BV9 et B53 peuvent-ils prédire la réussite scolaire ? L’Orientation scolaire et professionnelle. 45(3). https://doi.org/10.4000/osp.5070
- Bablu, T. A. (2024). Machine Learning in Automated Assessment: Enhancing Objectivity and Efficiency in Educational Evaluations. Journal of Advanced Computing Systems, 4(7). https://scipublication.com/index.php/JACS/article/view/20/9
- Bourda Y. (2004). Pourquoi indexer les ressources pédagogiques numériques ? [compte-rendu 16 novembre 2004 d’une communication orale]. https://tinyurl.com/4y4ee94t
- Bulger, M. (2016). Personalized Learning: The Conversations We’re Not Having. Data & Society. https://datasociety.net/pubs/ecl/PersonalizedLearning_primer_2016.pdf
- Bušljeta, R. (2013). Effective Use of Teaching and Learning Resources. Czech-Polish Historical and Pedagogical Journal, 5, 55-69. https://doi.org/10.2478/cphpj-2013-0014
- Chan, C.K.Y., et Tsi, L.H.Y. (2023). The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? https://tinyurl.com/wk8mt69m
- Chudleigh, S. (2024, 31 mai). Qu’est-ce qu’un agent d’intelligence artificielle ? Botpress. https://botpress.com/fr/blog/what-is-an-ai-agent
- Christodoulou, A., et Angeli, C. (2022). Adaptive Learning Techniques for a Personalized Educational Software in Developing Teachers’ Technological Pedagogical Content Knowledge. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.789397
- Commission européenne. (2024a). EU AI Act. Chapter I: General Provisions. Chapter I: General Provisions. Article 3, Definitions (1). https://www.euaiact.com/article/3
- Commission européenne. (2024b). EU AI Act. Chapter V: General-Purpose AI Models. Section 2: Obligations for Providers of General Purpose AI Models. Article 53. https://www.euaiact.com/article/53
- Commission nationale de l’informatique et des libertés (2022, 25 mars), Intelligence artificielle, de quoi parle-t-on ? https://www.cnil.fr/fr/intelligence-artificielle/intelligence-artificielle-de-quoi-parle-t-on
- Connac, S. (2022). La personnalisation des apprentissages : Agir face à l’hétérogénéité à l’école et au collège, ESF Sciences humaines. http://media.sodis.fr/cat/9782710145455/15/9782710145455-15-220816_151933.pdf
- Conseil supérieur de l’éducation et Commission de l’éthique en science et en technologie. (2024). Intelligence artificielle générative en enseignement supérieur : enjeux pédagogiques et éthiques. https://tinyurl.com/2ksfct4p
- Corbière, M. (1997). Une approche multidimensionnelle de la prédiction de la réussite scolaire. L’Orientation scolaire et professionnelle. 26(1), 109-135. https://www.persee.fr/doc/binop_0249-6739_1997_num_26_1_1178
- Corno, L. (2008). On Teaching Adaptively. Educational Psychologist, 43:3, 161-173, DOI: 10.1080/00461520802178466. https://doi.org/10.1080/00461520802178466.
- Drouin, G. (2021). L’évolution et le concept de race avec Guy Drouin [balado]. Radio-Canada. https://tinyurl.com/259x7sxm
- Dhara, S., Chatterjee, S., Chaudhuri, R., Goswami, P. A. et Ghosh, S. (2022). Chapter 8: Artificial Intelligence in Assessment of Students' Performance. Dans Artificial Intelligence in Higher Education: A Practical Approach (1re éd.) (p.153-167). Taylor and Francis. https://doi.org/10.1201/9781003184157-8
- Fédération étudiante collégiale du Québec (2022). Note sur l’utilisation de l’intelligence artificielle sur les campus. 118e Congrès ordinaire, Commission des affaires collégiales. https://docs.fecq.org/FECQ/M%C3%A9moires%20et%20avis/2022-2023/Note-IA_118eCo_LaMalbaie.pdf
- Gras, B. (2019). Éthique des Learning Analytics. Distances et médiations des savoirs, 26. https://doi.org/10.4000/dms.3768
- Gutwoska, A. (2024, 3 juillet). What are AI Agents? IBM. 3 juillet 2024. https://www.ibm.com/think/topics/ai-agents
- Hassanin, N. (2023, 23 aout). Law professor explores racial bias implications in facial recognition technology. UCalgary News. University of Calgary. https://ucalgary.ca/news/law-professor-explores-racial-bias-implications-facial-recognition-technology
- Hutchinson, A. (2024, 27 janvier). Meta Loses Data Scraping Case, Highlighting the Need For Clarified Regulation in a Social Media Context. Social Media Today. https://www.socialmediatoday.com/news/meta-loses-data-scraping-highlighting-need-clarified-regulation/705814/
- Lin, C.-C., Huang, A.Y.Q., et Lu, O.H.T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learn. Environ. 10, 41. https://doi.org/10.1186/s40561-023-00260-y
- Luckin, R. (2023, 14 juillet). Yes, AI could profoundly disrupt education. But maybe that’s not a bad thing. The Guardian. https://tinyurl.com/wh3rv6ks
- OECD. (2024, 6 mars). What is AI? Can you make a clear distinction between AI and non-AI systems? https://oecd.ai/en/wonk/definition
- New York State Education Department. (2023). State Education Department Issues Determination on Biometric Identifying Technology in Schools. https://tinyurl.com/mr38unr5
- Parlement européen. (2024). Proposal for a Regulation of the European parliament and of the Council laying down harmonised rules on the artificial intelligence (Artificial Intelligence Act) and amending certain union legislative. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
- Psyché, V. et Ruer, P. (2019). L’apprentissage adaptatif intelligent. I Le Tableau, 8(4). https://pedagogie.uquebec.ca/le-tableau/lapprentissage-adaptatif-intelligent
- Reiners, T., Dreher, C. et Dreher, H. (2011). Six Key Topics for Automated Assessment Utilisation and Acceptance. Informatics in Education, 10(1), 47-64, Vilnius University. https://files.eric.ed.gov/fulltext/EJ1064287.pdf
- Romainville, M. (1997). Peut-on prédire la réussite d’une première année universitaire ? Revue française de pédagogie. L’éducation préscolaire, 119, pp. 81-90. https://www.persee.fr/doc/rfp_0556-7807_1997_num_119_1_1169
- Salazar L. R., Peeples, S. F., Brooks, M. E. (2024). Generative AI Ethical Considerations and Discriminatory Biases on Diverse Students Within the Classroom. Dans S. Elmoudden et J. Wrench (dir.), The Role of Generative AI in the Communication Classroom (p. 191-213). IGI Global. https://doi.org/10.4018/979-8-3693-0831-8.ch010
- Sankin, A., et Mattu, S. (2023, 2 octobre), Predictive Policing Software Terrible at Predicting Crimes. Wired. https://www.wired.com/story/plainfield-geolitica-crime-predictions/
- Shah, K, Ahmed, J., Shenoy, N. et Srikant, N. (2013). How different are students and their learning styles? International Journal of Research in Medical Sciences, 1(3), 212–215. https://doi.org/10.5455/2320-6012.ijrms20130808
- Sheikh, H., Prins, C., et Schrijvers, E. (2023). Artificial Intelligence: Definition and Background. Dans Sheikh, H., Prins, C., et Schrijvers, E. (dir.), Mission AI. Research for Policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2
- Torres, J.-C. (2016). Les enjeux de la différenciation pédagogique : entre résolutions formelles et indécisions pratiques. Administration & Éducation, 2 (150), 159-164. https://doi.org/10.3917/admed.150.0159
- Tudor, M.-D. (2022). La traduction des expressions idiomatiques à l’aide de moteurs de traduction automatique. Analele Universității Bucuresti. Limbi si Literaturi Străine, 68(2), 109-128. https://tinyurl.com/22zy55ku
- UNESCO. (2024). Education for sustainable development. Sustainable development. https://en.unesco.org/themes/education/sdgs/material/04
- Vang, C. (2022). The Impact of Dynamic Difficulty Adjustment on Player Experience in Video Games. Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal: Vol. 9: Iss. 1, Article 7. https://doi.org/10.61366/25762176.1105
- Yan, L., Martinez-Maldonado, R., et Gasevic, D. (2024). Generative Artificial Intelligence in Learning Analytics: Contextualising Opportunities and Challenges through the Learning Analytics Cycle. Dans LAK '24: Proceedings of the 14th Learning Analytics and Knowledge Conference (p. 101-111). ACM. https://doi.org/10.1145/3636555.3636856
- Wang, W., Xu, K., Niu, H. et Miao, X. (2020). Emotion Recognition of Students Based on Facial Expressions in Online Education Based on the Perspective of Computer Simulation. Complexity. 2020. 1-9. 10. https://doi.org/10.1155/2020/4065207
- Wiley, J., Hastings, P., Blaum, D., Jaeger, A. J., Hugues, S., Wallace, P., Griffin, T. D. et Britt, M. A. (2017). Different Approaches to Assessing the Quality of Explanations Following a Multiple-Document Inquiry Activity in Science. International Journal of Artificial Intelligence in Education, 27, 758-790. https://doi.org/10.1007/s40593-017-0138-z
- Wu, S., Koo, M., Blum, L., Black, A., Kao, L. Fei, Z., Scalzo, F. et Kurtz, I. (2024, 17 janvier) Benchmarking Open-Source Large Language Models, GPT-4 and Claude 2 on Multiple-Choice Questions in Nephrology. NEJM AI. 1(2) Datasets, Benchmarks, and Protocols. https://doi.org/10.1056/AIdbp2300092
- Zovko, V. et Gudlin, M. (2019). Artificial Intelligence as a Disruptive Technology in Education. The Future of Education.9th ed. International Conference. https://tinyurl.com/326uncnr