Abstracts
Abstract
Coastal regions within Auyuittuq National Park Reserve (ANPR) are sensitive to mass movement processes and threatened by flooding in response to sea level rise. These processes pose a risk to culturally significant archaeological sites within ANPR. Sites at risk of disturbance need to be identified and protected to conserve valuable archaeological resources. Since the costs of identifying and monitoring sites at risk in remote areas are substantial, modern technologies such as Geographic Information Systems (GIS) can be used to create a more rapid and cost-effective means to monitor coastal environments and manage coastal resources. This study examines the application of GIS technology to assess the risk of disturbance of 44 coastal archaeological sites by mass movement and marine flooding within ANPR. Data on surficial materials and slope angles are combined in an overlay analysis to assess terrain sensitivity to mass movement. The output from this analysis is a coarse regional assessment of mass movement potential as it relates to the strength of materials on slopes. The overall risk of disturbance for archaeological sites within ANPR is assessed by combining the risk of mass movement and the risk of marine flooding. Twenty-eight sites within ANPR are identified as being at considerable risk to disturbance: these sites are located largely on glaciomarine sediments at moderate or high slope angles and are at substantial risk to flooding (less than two metres above sea level).
Résumé
Application des techniques SIG dans l’évaluation du risque de perturbation des sites archéologiques par les mouvements de masse et les inondations marines dans la réserve du parc national de Auyuittuq, Nunavut. Les côtes de la réserve du parc national de Auyuittuq sont sensibles aux mouvements de masse et sont affectées par la montée du niveau marin. Ceci constitue un risque pour les sites archéologiques de grande valeur culturelle. De tels sites doivent être identifiés et protégés afin de préserver les ressources archéologiques. Parce que les coûts d’identification et de suivi des sites à risque dans les régions éloignées sont substantiels, les technologies modernes peu coûteuses dont les Systèmes d’Information Géographique (SIG) peuvent être utilisées pour le suivi des environnements côtiers et la gestion des ressources côtières. Cette étude porte sur l’application d’un SIG pour évaluer le risque de perturbation par les mouvements de masse et les inondations de 44 sites archéologiques côtiers dans la réserve du parc national de Auyuittuq. Les données concernant les matériaux de surface et l’angle des pentes sont combinées dans une analyse d’évaluation de la sensibilité du terrain aux mouvements de masse. Le résultat de cette analyse consiste en une estimation régionale d’ensemble du potentiel de mouvement de masse en fonction de la résistance du matériel sur les pentes. Le risque global de perturbation des sites archéologiques de la réserve a été évalué à partir de la combinaison des risques de mouvements de masse et d’inondation marine. Vingt-huit sites présentent un risque considérable de perturbation puisqu’ils occupent des sédiments glaciomarins à pente modérée à élevée, à moins de deux mètres au-dessus du niveau de la mer.
Appendices
References
- Arctic Climate Impact Assessment (ACIA), 2005. Cryosphere and Hydrology, Chapter 6 (available online at http://www.acia.uaf.edu/, last accessed on August 5th, 2006).
- Andrews, J.T. and Peltier, W.R., 1989. Quaternary geodynamics in Canada, p. 543-572. In R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1., 839 p.
- Atlas of Canada, 2005. Permafrost, Glaciers and Sea Ice (available online at http://atlas.gc.ca/, last accessed October 29th, 2005).
- Atmospheric Environment Service, 1988. Ice Atlas: Hudson Bay and Approaches. Minister of Supply and Services Canada, Ottawa, 123 p.
- Atmospherice Environment Service, 1993. Canadian Climate Normals, 1961-1990, Yukon and the Northwest Territories. Minister of Supply and Services Canada, Ottawa.
- Bird, E.C.F., 1993. Submerging Coasts: The Effects of a Rising Sea Level on Coastal Environments. John Wiley and Sons, New York, 184 p.
- Bird, J.B., 1967. The Physiography of Arctic Canada (with special reference to the area south of Parry Channel). Johns Hopkins University Press, Baltimore, 336 p.
- Bird, J.B., 1977. Coastal morphology and terrain studies, Kivitoo Peninsula, Baffin Island. Geological Survey of Canada, Ottawa, Paper 77-1C, p. 53-55.
- Carson, M.A. and Kirkby, M.J., 1972. Hillslope Form and Processes. Cambridge University Press, Cambridge, 475 p.
- Church, M., Stock, R.F. and Ryder, J.M., 1979. Contemporary sedimentary environments on Baffin Island, N.W.T., Canada: debris slope accumulations. Arctic and Alpine Research, 11: 371-402.
- Dawes, P.R. and Christie, R.L., 1991. Geomorphic regions, p. 29-56. In H.P. Trettin, ed., Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 3, 569 p.
- Dyke, A.S., Andrews, J.T. and Miller, G.H., 1982. Quaternary geology of Cumberland Peninsula, Baffin Island, District of Franklin. Geological Survey of Canada, Ottawa, Memoir 403, 32 p.
- England, J.H. and Andrews, J.T. 1973. Broughton Island–a reference area for Wisconsin and Holocene chronology and sea-level changes on eastern Baffin Island. Boreas, 2: 17-32.
- Forbes, D.L. and Taylor, R.B., 1994. Ice in the shore zone and the geomorphology of cold coasts. Progess in Physical Geography, 18: 59-89.
- Franklin, S.E., 1987a. Geomorphometric processing of digital elevation models. Computers and Geosciences, 13: 603-609.
- Franklin, S.E., 1987b. Terrain analysis from digital patterns in geomorphometry and LANDSAT MSS spectral response. Photogrammetric Engineering and Remote Sensing, 53: 59-65.
- Gilbert, R., 1982. Contemporary sedimentary environments on Baffin Island, N.W.T., Canada: glaciomarine processes in fiords of eastern Cumberland Peninsula. Arctic and Alpine Research, 14: 1-12.
- Intera Tydac, 1993. SPANS GIS Reference Manual. Inter Tydac Technologies, Nepean, 138 p.
- Intergovernmental Panel on Climate Change (IPCC), 2001. Climate Change 2001, Working Group II: Impacts, Adaptation and Vulnerability, Chapter 3: Developing and Applying Scenarios, 3.6: Sea-Level Rise Scenarios.
- Jacobs, J.D., 1979. Climate and the Thule Ecumene, p. 528-554. In A.P. McCartney, ed., Thule Eskimo Culture: An Anthropological retrospective. Archaeological Survey of Canada, Ottawa, Paper 88, 586 p.
- Klemas, V.V., 2001. Remote sensing of landscape-level coastal environmental indicators. Environmental Management, 27: 47-57.
- McGhee, R., 1990. Canadian Arctic Prehistory. Canadian Museum of Civilization, Ottawa, 128 p.
- McLaren, P., 1980. The coastal morphology and sedimentology of Labrador: a study of shoreline sensitivity to a potential oil spill. Geological Survey of Canada, Ottawa, Paper 79-28, 41 p.
- Miller, G.H., Locke III, W.W. and Locke, G.W., 1980. Physical characteristics of the southeastern Baffin Island coastal zone, p. 251-265. In S.B. McCann, ed., The Coastline of Canada, Geological Survey of Canada, Ottawa, Paper 80-10.
- O’Regan, P.R., 1996. The use of contemporary information technologies for coastal research–a review. Journal of Coastal Research, 12: 192-204.
- Parsons, A.J., 1988. Hillslope Form. Routledge, New York, 212 p.
- Pheasant, D.R. and Andrews, J.T., 1973. Wisconsin glacial chronology and relative sea-level movements, Narpaing Fiord, Broughton Island area, eastern Baffin Island, NWT. Canadian Journal of Earth Sciences, 10: 1621-1641.
- Schledermann, P., 1975. Thule Eskimo Prehistory of Cumberland Sound, Baffin Island, Canada. Archaeological Survey of Canada, Ottawa, Paper 38, 297 p.
- Schledermann, P., 1976. History of Human Occupation, p. 63-91. In R. Wilson, ed., The Land that Never Melts: Auyuittuq National Park. Minister of Supply and Services Canada, Ottawa, 212 p.
- Selby, M.J., 1982. Hillslope Materials and Processes. Oxford University Press, Oxford, 264 p.
- Sempels, J.M., 1982. Coastlines of the Eastern Arctic. Arctic, 35: 170-179.
- Shaw, J., Taylor, R.B., Solomon, S., Christian, H.A. and Forbes, D.L., 1998a. Potential impacts of global sea-level rise on Canadian coasts. Canadian Geographer, 42: 365-379.
- Shaw, J., Taylor, R.B., Forbes, D.L., Ruz, M.H. and Solomon, S.M., 1998b. Sensitivity of the Coasts of Canada to Sea-level Rise. Geological Survey of Canada, Ottawa, Bulletin 505, 79 p.
- Solsten, B.L., 1998. The Use of a GIS to Assess Terrain Sensitivity to Disturbance: Auyuittuq National Park Reserve, Arctic Canada. M.Sc. thesis, University of Sasktachewan, 130 p.
- Taylor, R.B. and McCann, S.B., 1983. Coastal Depositional Landforms in Northern Canada, p. 53-75. In D.E. Smith and A.G. Dawson, eds., Shorelines and Isostasy. Kluwer Academic Press, New York.
- Welch, R., Remillard, M. and Alberts, J., 1992. Integration of GPS, remote sensing, and GIS techniques for coastal resource management. Photogrammetric Engineering and Remote Sensing, 58: 1571-1578.
- Young, A., 1972. Slopes. Oliver and Boyd, Edinburgh, 288 p.