Abstracts
Abstract
Landslides in Champlain Sea clays have played an important role in shaping Eastern Ontario’s landscape. Despite extensive research, there is a limited understanding of the relations between landslide activity, climatic controls, and the geomorphic evolution of river valleys in Champlain Sea clay deposits. With these issues in mind, a study was undertaken to determine the controls on the spatio-temporal distribution of contemporary landslide activity in valley slopes composed of Champlain Sea clay. The study area was the Green’s Creek valley located in the east end of Ottawa, Ontario. Observations and measurements indicate that landslide activity is closely related to valley development. An inventory of landslide activity from 73 years of aerial photographs revealed that landslides occurred preferentially in slopes located on the outside of meander bends, and that they often recurred in the same slope after a period of ripening. The largest and highest density of landslides occurred along a major tributary valley where geomorphic features such as knickpoints, V-shaped valley profiles and bedrock depth-to-slope height ratios reflect an unstable phase of valley development. A small number of landslides incurred successive failures along the slopes of the backscarp for several years-to-decades after the initial failure. Correlation analysis showed that the temporal distribution of landslide activity has fluctuated in response to decadal-scale changes in the amount of precipitation.
Résumé
Les glissements de terrain qui se sont produits dans les vallées creusées dans les argiles de la Mer de Champlain ont joué un rôle déterminant dans la formation du paysage de l’est de l’Ontario. Malgré de nombreuses recherches, les relations entre les glissements de terrain, le climat et le creusement des vallées fluviales de la région demeurent peu connues. La présente étude a pour but d’identifier les mécanismes qui régissent la distribution spatio-temporelle des glissements de terrain contemporains dans les vallées de la région d’Ottawa, en Ontario, et plus particulièrement dans la vallée de Green’s Creek. Des observations et des mesures de terrain ont permis de démontrer que les occurrences de glissements de terrain étaient fortement tributaires des phases de développement de la vallée. Un inventaire des glissements de terrain réalisé à l’aide de photographies aériennes couvrant une période de 73 ans démontre que ceux-ci se produisent sur la berge externe des méandres et qu’ils ont tendance à se répéter aux mêmes endroits. Les plus grandes densité et diversité de glissements ont été observées le long d’un ruisseau tributaire présentant de nombreuses ruptures de pente, un profil transversal en V et un rapport profondeur de la roche-mère/ hauteur de la pente indiquant que la vallée passe par une phase instable de son développement. Quelques glissements de nature régressive sont demeurés actifs plusieurs années après leur formation. Une analyse de corrélation entre la fréquence des glissements de terrain et la quantité des précipitations indique que la répartition temporelle des glissements est étroitement liée aux variations de précipitations à l’échelle de la décennie.
Appendices
References
- Allen, J.R., 1974. Reaction, relaxation and lag in natural sedimentary systems: General principles, examples and lessons. Earth-Science Reviews, 10: 263-342.
- Aylsworth, J.M., Lawrence, D.E. and Guertin, J., 2000. Did two massive earthquakes in the Holocene induce widespread landsliding and near-surface deformation in part of the Ottawa Valley, Canada? Geology, 28: 903-906.
- Bélanger, J.R., 1994. Urban geology of Canada’s National Capital Region. Geological Survey of Canada, Ottawa, Open File 2878, 1 diskette.
- ——— 2001. Urban Geology of the National Capital Area. Website: http://gsc.nrcan.gc.ca/urbgeo/natcap/index_e.php. Last accessed December 5, 2005.
- Bjerrum, L., Loken, T., Heiberg, S. and Foster, R., 1969. A field study of factors responsible for quick clay slides, p. 531-540. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering (August 1969, Mexico City), vol. 2, 702 p.
- Bozozuk, M., 1976. Mud Creek Bridge foundation movements. Canadian Geotechnical Journal, 13: 21-26.
- Brundsen, D., 2001. A critical assessment of the sensitivity concept in geomorphology. Catena, 42: 99-123.
- Chorley, R.J. and Kennedy, B.A., 1971. Physical Geography: A Systems Approach. Prentice-Hall International, London. 370 p.
- Crawford, C.B. and Eden, W.J., 1967. Stability of natural slopes in sensitive clay. Journal of Soil Mechanics and Foundation Division (American Society of Civil Engineers), 93: 419-436.
- Demers, D., Leroueil, S. and d’Astous, J., 1999. Investigation of a landslide in Maskinongé, Québec. Canadian Geotechnical Journal, 36: 1001-1014.
- Eden, W.J., 1967. Buried soil profile under apron of an earthflow. Bulletin of the Geological Society of America, 78: 1183-1184.
- ——— 1972. Some observations at Le Coteau landslide, Gatineau, Québec. Canadian Geotechnical Journal, 9: 508-514.
- ——— 1975. Mechanism of landslides in Leda clay with special reference to the Ottawa area, p. 159-171. Proceedings of the 4th Guelph Symposium on Geomorphology. Geoabstracts, Norwich, 202 p.
- Eden, W.J., Fletcher, E.B. and Mitchell, R.J., 1971. South Nation River landslide, 16 May 1971. Canadian Geotechnical Journal, 8: 446-451.
- Eden, W.J. and Mitchell, R.J., 1970. The mechanics of landslides in Leda clay. Canadian Geotechnical Journal, 7: 285-296.
- Evans, S.G. and Brooks, G.R., 1994. An earthflow in sensitive Champlain Sea sediments at Lemieux, Ontario, June 20, 1993, and its impact on the South Nation River. Canadian Geotechnical Journal, 31: 384-394.
- Fransham, P.B. and Gadd, N.R., 1977. Geological and geomorphological controls of landslides in Ottawa Valley, Ontario. Canadian Geotechnical Journal, 14: 531-539.
- Fulton, R.J. and Richard, S.H., 1987. Chronology of late Quaternary events in the Ottawa region, p. 24-30. In R.J. Fulton, ed., Quaternary Geology of the Ottawa Region, Ontario and Québec. Geological Survey of Canada, Ottawa, Paper 86-23, 47 p.
- Gadd, N.R., 1962. Surficial Geology of the Ottawa Area. Geological Survey of Canada, Ottawa, Paper 62-16, 4 p.
- ——— 1976. Surficial Geology and Landslides of Thurso-Russell Map-Area. Geological Survey of Canada, Ottawa, Paper 75-35, 7 p.
- Greenway, D.R., 1987. Vegetation and Slope Stability, p. 187-230. In M.G. Anderson and K.S. Richards, eds., Slope Stability: Geotechnical Engineering and Geomorphology, John Wiley, Chichester, 648 p.
- Haynes, J.E., 1973. An investigation into the origin of the two-layer system in Leda clay. Honours Thesis, Carleton University, 47 p.
- Jarrett, P.M. and Eden, W.J., 1970. Groundwater flow in Eastern Canada. Canadian Geotechnical Journal, 7: 326-333.
- Klugman, M.A. and Chung, P., 1976. Slope Stability Study of the Regional Municipality of Ottawa-Carleton, Ontario, Canada. Ontario Geological Survey, Toronto, Miscellaneous Paper MP 68, 13 p.
- Lafleur, J. and Lefebvre, G., 1980. Groundwater regime associated with slope stability in Canadian soft clay deposits. Canadian Geotechnical Journal, 17: 44-53.
- La Rochelle, P., 1975. Causes and mechanism of landslides in sensitive clays with special reference to the Québec Province area, p. 173-182. Proceedings of the 4th Guelph Symposium on Geomorphology. GeoAbstracts, Norwich, 202 p.
- La Rochelle, P., Chagnon, J.Y. and Lefebvre, G., 1970. Regional geology and landslides in the marine clay deposits of Eastern Canada. Canadian Geotechnical Journal, 7: 145-156.
- Lebuis, J., Robert, J.M. and Rissmann, P., 1983. Regional mapping of landslides hazard in Québec, p. 205-262. In Proceedings of the Symposium on Slopes on Soft Clays (March 8-10, 1982, Linköping), Swedish Geotechnical Institute, Linköping, Report 17, 461 p.
- Lefebvre, G., 1981. Fourth Canadian Geotechnical Colloquium: Strength and slope stability in Canadian soft clay deposits. Canadian Geotechnical Journal, 18: 420-442.
- ——— 1986. Slope instability and valley formation in Canadian soft clay deposits. Canadian Geotechnical Journal, 23: 261-270.
- Lefebvre, G., Rohan, K. and Douville, S., 1985. Erosivity of natural intact structured clay: Evaluation. Canadian Geotechnical Journal, 22: 508-517.
- Leroueil, S., 2001. Natural slopes and cuts: Movement and failure mechanisms. Géotechnique, 51: 197-243.
- Lo, K.Y. and Lee, C.F., 1974. An evaluation of the stability of natural slopes in plastic Champlain clays. Canadian Geotechnical Journal, 11: 165-181.
- Locat, J., Demers, D., Lebuis, J. and Rissmann, P., 1984. Prédiction des glissements de terrain : application aux argiles sensibles, Rivière Chacoura, Québec, Canada, p. 549-555. Proceedings of the 4th International Symposium on Landslides, Toronto, vol. 2, 581 p.
- Mitchell, R.J., 1970. Landslides at Breckenridge, Pineview Golf Club, and Rockcliffe. Division of Building Research, National Research Council of Canada, Technical Paper 322, Ottawa, 30 p.
- Mitchell, R.J. and Eden, W.J., 1972. Measured movements of clay slopes in the Ottawa area. Canadian Journal of Earth Sciences, 9: 1001-1013.
- Mitchell, R.J. and Markell, A.R., 1974. Flowslides in sensitive soils. Canadian Geotechnical Journal, 11: 11-31.
- Mitchell, R.J. and Williams, D.R., 1981. Induced failure of an instrumented clay slope, p. 479-484. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering (June 15-19, 1981, Stockholm), A.A. Balkema, Rotterdam, vol. 3.
- Palmquist, R.C. and Bible, G., 1980. Conceptual modeling of landslide distribution in time and space. Bulletin of the International Association of Engineering Geology, 21: 178-186.
- Poschmann, A.S., Klassen, K.E., Klugman, M.A. and Goodings, D., 1983. Slope Stability Study of the South Nation River and Portions of the Ottawa River. Ontario Geological Survey, Toronto, Miscellaneous Paper 112, 20 p.
- Quigley, R.M., 1980. Geology, mineralogy, and geochemistry of Canadian soft soils: A geotechnical perspective. Canadian Geotechnical Journal, 22: 261-285.
- Rankka, K., Andersson-Sköld, Y., Hultén, C., Larsson, R., Leroux, V. and Dahlin, T., 2004. Quick clay in Sweden. Swedish Geotechnical Institute Report 65, Linköping, 145 p.
- Sangrey, D.A. and Paul, M.J., 1971. A regional study of landsliding near Ottawa. Canadian Geotechnical Journal, 8: 315-335.
- Schmidt, J., 2001. The role of mass movements for slope evolution: Conceptual approaches and model applications in the Bonn area. Ph.D. thesis, University of Bonn, 184 p.
- Tavenas, F., 1984. Landslides in Canadian quick clays – A state of the art, p. 141-154. Proceedings of the 4th International Symposium on Landslides (September 17, 1984, Toronto), Canadian Geotechnical Society, Downsview, vol. 1, 734 p.
- Tavenas, F., Chagnon, J.Y. and La Rochelle, P., 1971. The Saint-Jean-Vianney landslide: Observations and eyewitness accounts. Canadian Geotechnical Journal, 8: 463-478.
- Tavenas, F., Flon, P., Leroueil, S. and Lebuis, J., 1983. Remolding energy and risk of slide retrogression in sensitive clays, p. 423-454. In Proceedings of the Symposium on Slopes on Soft Clays (March 8-10, 1982, Linköping), Swedish Geotechnical Institute, Linköping, Report 17, 461 p.
- Terlien, M.T.J., 1998. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology, 35: 124-130.
- Torrance, J.K., 1983. Towards a general model of quick clay development. Sedimentology, 30: 547-555.
- ——— 1988. Mineralogy, pore-water chemistry and geotechnical behaviour of Champlain Sea and related sediments, p. 259-275. In N.R. Gadd, ed., The Late Quaternary Development of the Champlain Sea Basin. Geological Association of Canada, St John’s, Special Paper 35, 312 p.
- Varnes, D.J., 1978. Slope movement types and processes, p. 11-33. In R.L. Schuster and R.J. Krizek, eds., Landslides: Analysis and Control. National Research Council, Transportation Research Board, Washington, D.C., Special Report 176, 234 p.
- Williams, D.R., Romeril, P.M. and Mitchell, R.J., 1979. Riverbank erosion and recession in the Ottawa area. Canadian Geotechnical Journal, 16: 641-650.