Abstracts
Résumé
Dans les cours d’eau à lit de graviers, les blocs et les amas de galets entraînent des changements de rugosité qui jouent un rôle important sur la variabilité spatiale du cisaillement exercé sur le lit, de la structure de l’écoulement et du transport des sédiments. Pourtant, peu de méthodes permettent de décrire l’organisation de ces éléments de rugosité du lit à l’échelle de la section de cours d’eau. Nous présentons deux méthodes d’échantillonnage qui permettent de quantifier l’organisation spatiale des blocs et des amas de galets sur quatre tronçons de rivière : la cartographie ponctuelle des blocs isolés et des amas de galets et la cartographie systématique de la topographie du lit. Les caractéristiques de l’organisation spatiale de ces éléments de rugosité sont quantifiées et comparées à celles de distributions aléatoires. Nous observons d’abord que la concentration des blocs isolés et des amas de galets, la distance qui les sépare et les caractéristiques des alignements composés de plusieurs éléments de rugosité sont semblables dans le cas des cours d’eau de même dimension. Ensuite, certaines caractéristiques de l’organisation spatiale des blocs et des amas de galets ressemblent à celles des distributions aléatoires. Nous proposons en discussion une interprétation dynamique de l’organisation spatiale des éléments de rugosité qui tienne compte de ces observations.
Abstract
Pebble clusters and large protuberant clasts such as boulders introduce a strong variability in the distribution of roughness in gravel-bed rivers and exert a significant influence on flow resistance and sediment transport. However, understanding the complex morphology of the bed at a reach scale is limited by the scarcity of sampling strategies to locate these roughness elements in the reach. In this paper, we present two sampling strategies to characterize the spatial organisation of boulders and pebble clusters in four river reaches. We have mapped 1) isolated boulders and pebble clusters and 2) bed topography at a high spatial resolution to compare the characteristics of the spatial organisation of these elements with those obtained from random distributions. We observed that the concentration of boulders and pebble clusters, the distance between neighbouring elements and the characteristics of transverse ribs are similar for reaches of the same width. Furthermore, some characteristics of the spatial organisation of the elements in a natural reach are similar to that of random distributions. A dynamic interpretation of the spatial organisation of bedforms that includes these observations is proposed.
Resumen
En los cauces formados por un lecho de grava los bloques de conglomerados de cantos rodados inducen cambios de rugosidad que juegan un papel importante en la variación espacial del corte ejercido sobre el lecho, de la estructura del escurrimiento y del transporte de los sedimentos. Sin embargo, pocos métodos permiten describir la organización de esos elementos de rugosidad del lecho a la escala de la sección del cauce. Se presentan aquí dos métodos de muestreo que permiten cuantificar la organización espacial de los bloques de conglomerados de cantos rodados en cuatro tramos del río : La cartografía puntual de los bloques aislados y de los conglomerados de cantos rodados y la cartografía sistemática de la topografía del lecho. Las características de la organización espacial de esos elementos de rugosidad son calculadas y comparadas con aquellas de distribución aleatoria. En primer lugar se observa que en la concentración de bloques aislados y de conglomerados de cantos rodados la distancia que los separa y las características de los alineamiento compuestos por varios elementos de rugosidad son similares en el caso de cauces de dimensión semejante. Posteriormente ciertas características de la organización espacial de los bloques y de los conglomerados de cantos rodados se asemejan a los de distribución aleatoria. Se propone discutir la interpretación dinámica de la organización espacial de los elementos de rugosidad que toman en cuenta estas observaciones.
Appendices
Références
- Ahnert, F., 1994. Modelling the development of non-periglacial sorted nets. Catena, 23 : 43-63.
- Bluck, B.J., 1987. Bed forms and clast size changes in gravel-bed rivers, p. 159-179. In K.S Richards, édit., River Channels: Environment and Process. The Institute of British Geographer Special Publication Series, Basil Blackwell, Oxford, 391 p.
- Bray, D.I., 1980. Evaluation of effective boundary roughness for gravel-bed rivers. Canadian Journal of Civil Engineering, 7 : 392-397.
- ——— 1982. Flow resistance in gravel-bed rivers, p. 109137. In R.D. Hey, J.C. Bathurst et C.R Thorne, édit., Gravel-bed Rivers: Fluvial Processes, Engineering and Management. John Wiley and Sons, Toronto, 875 p.
- Brayshaw, A.C., 1985. Bed microtopography and entrainment thresholds in gravel-bed rivers. Geological Society of American Bulletin, 96 : 218-223.
- Buffin-Bélanger, T., Roy, A.G. et Kirkbride, A., 2000. Vers l’intégration des structures turbulentes de l’écoulement dans la dynamique d’un cours d’eau à lit de graviers. Géographie physique et Quaternaire, 54 : 105117.
- Church, M., Hassan, M.A. et Wolcott J.F., 1998. Stabilizing self-organized structures in gravel-bed stream channels: Field experimental observations. Water Resources Research, 34 : 3169-3179.
- Clifford N.J., Robert, A. et Richards, K.S., 1992. Estimation of flow resistance in gravel-bedded rivers: A physical explanation of the multiplier of roughness length. Earth Surface Processes and Landforms, 17 : 111-126.
- Dal Cin, R., 1968. «Pebble clusters» : Their origin and utilization in the study of paleocurrents. Sedimentary Geology, 2 : 233-241.
- De Jong, C. et Ergenzinger, P., 1995. The interrelations between mountain valley form and river-bed arrangement, p. 55-91. In E.J. Hickin, édit., River Geomorphology. John Wiley and Sons, Toronto, 255 p.
- Griffiths, G.A., 1981. Flow resistance in coarse gravel bed rivers. Proceedings of the American Society of Civil Engineers, Journal of Hydraulics Division, 107 : 899-918.
- Gustavson, T.C., 1974. Sedimentation on gravel outwash fans, Malaspina glacier foreland, Alaska. Journal of Sedimentary Petrology, 44 : 374-389.
- Hassan, M.A et Church, M., 2000. Experiments on surface structure and partial sediment transport on a gravel bed. Water Resources Research, 36 : 1885-1895.
- Hassan, M.A. et Reid, I., 1990. The influence of microform bed roughness elements on flow and sediment transport in gravel bed river. Earth Surface Processes and Landforms, 15 : 739-750.
- Hey, R.D., 1979. Flow resistance in gravel-bed rivers. Journal of the Hydraulics Division, 105 : 365-379.
- Ibbeken, H. et Schleyer, R., 1986. Photo-sieving: A method for grain size analysis of coarse-grained, unconsolidated bedding surfaces. Earth Surface Processes and Landforms, 11 : 59-77.
- Lane, S.N., Chandler, J.H. et Porfiri, K., 2001. Monitoring river channel and flume surface with digital photogrammetry. Journal of Hydraulic Engineering, 127 : 871-877.
- Laronne, J.B. et Carson, M.A., 1976. Interrelationships between bed morphology and bed-material transport for a small, gravel-bed channel. Sedimentology, 23 : 67-85.
- Leopold, L. B., Wolman, M.G. et Miller, J.P., 1964. Fluvial Processes in Geomorphology. W.H. Freeman, San Francisco, 522 p.
- Martini, I.P., 1977. Gravelly flood deposits of Irvine Creek, Ontario, Canada. Sedimentology, 24 : 603-622.
- McDonald, B.C. et Banerjee, I., 1971. Sediment and bed forms on a braided outwash plain. Canadian Journal of Earth Sciences, 8 : 1282-1301.
- Millar, R., 1999. Grain and form resistance in gravel-bed rivers. Journal of Hydraulic Research, 37 : 303-312.
- Morris, H.M., 1955. Flow in rough conduits. Transactions of the American Society of Civil Engineers, 120 : 373-398.
- Naden, P., 1987. Modelling gravel-bed topography from sediment transport. Earth Surface Processes and Landforms, 12 : 353-367.
- Naden, P. et Brayshaw, A.C., 1987. Small and medium-scale bedforms in gravel-bed rivers, p. 249-271. In K.S. Richards, édit., River Channels: Environment and Process. The Institute of British Geographer Special Publication Series, Basil Blackwell, Oxford, 391 p.
- Nowell, A. et Church M., 1979. Turbulent flow in a depth limited boundary layer. Journal of Geophysical Research, 84 : 4816-4824.
- Raupach, M.R., 1981. Conditional statistic of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. Journal of Fluid Mechanics, 108 : 363-382.
- Robert, A., 1990. Boundary roughness in coarse-grained channels. Progress in Physical Geography, 14 : 42-70.
- ——— 1996. Turbulence at a roughness transition in a depth limited flow over a gravel bed. Geomorphology, 16 : 175-187.
- Robert, A., Roy, A.G. et De Serres, B., 1992. Changes in velocity profiles at roughness transitions in coarse-grained channels. Sedimentology, 39 : 725-735.
- ——— 1993. Space-time correlations of velocity measurements at a roughness transition in a gravel-bed river, p. 165-184. In N.J Clifford, J.R. French et J. Hardisty, édit., Turbulence: Perspectives on Flow and Sediment Transport. John Wiley and Sons, Toronto, 360 p.
- Smart, G.M., 1999. Turbulent velocity profiles and boundary shear in gravel bed rivers. Journal of Hydraulic Engineering, 125 : 106-116.
- Tait, S.J., Willetts, B.B. et Maizels, J.K, 1992. Laboratory observation of bed armouring and changes in bedload composition, p. 205-225. In P. Billi, R.D. Hey, C.R. Thorne et P. Tacconi, édit., Dynamics of Gravel-bed Rivers. John Wiley and Sons, Toronto, 673 p.
- Thompson, D.M., 2001. Random controls on semi-rhythmic spacing of pools and riffles in construction-dominated rivers. Earth Surface Processes and Landforms, 26 : 1195-1212.
- Tribe, S. et Church, M., 1999. Simulations of cobble structure on a gravel streambed. Water Resources Research, 35 : 311-318.
- Wohl, E.E. et Ikeda, H., 1998. The effect of roughness configuration on velocity profiles in an artificial channel. Earth Surface Processes and Landforms, 23 : 159-169.
- Zimmermann, A. et Church, M., 2001. Channel morphology, gradient profiles and bed stresses during flood in step-pool channel. Geomorphology, 40 : 311-327.