Cite this article
- MLA
-
Hancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions / Xiao, J., & Gao, W. (2020). Connecting the dots: Reader ratings, bibliographic data, and machine-learning algorithms for monograph selection. The Serials Librarian, 78(1-4), 117-122. https://doi.org/10.1080/0361526X.2020.1707599." Evidence Based Library and Information Practice, volume 19, number 2, 2024, p. 133–135. https://doi.org/10.18438/eblip30521
- APA
-
Hancock, K. (2024). Review of [Machine-learning Recommender Systems Can Inform Collection Development Decisions / Xiao, J., & Gao, W. (2020). Connecting the dots: Reader ratings, bibliographic data, and machine-learning algorithms for monograph selection. The Serials Librarian, 78(1-4), 117-122. https://doi.org/10.1080/0361526X.2020.1707599]. Evidence Based Library and Information Practice, 19(2), 133–135. https://doi.org/10.18438/eblip30521
- Chicago
-
Hancock, Kristy "Machine-learning Recommender Systems Can Inform Collection Development Decisions / Xiao, J., & Gao, W. (2020). Connecting the dots: Reader ratings, bibliographic data, and machine-learning algorithms for monograph selection. The Serials Librarian, 78(1-4), 117-122. https://doi.org/10.1080/0361526X.2020.1707599". Evidence Based Library and Information Practice 19, no. 2 (2024) : 133–135. https://doi.org/10.18438/eblip30521
Export the record for this article
RIS
EndNote, Papers, Reference Manager, RefWorks, Zotero
ENW
EndNote (version X9.1 and above), Zotero
BIB
BibTeX, JabRef, Mendeley, Zotero