Abstracts
Résumé
Le développement d’Internet et des technologies numériques a conduit à l’expansion du jeu en ligne et de son modèle dominant : les jeux gratuits (free-to-play, F2P). Une large majorité de personnes jouent à ces jeux de manière récréative, mais la pratique de ces jeux peut avoir des effets néfastes pour certains individus vulnérables ou leurs proches.
Cette étude fait l’hypothèse que la population des joueurs free-to-play n’est pas un groupe homogène et vise à identifier, à travers une analyse de classes latentes, des sous-groupes de joueurs en fonction de leurs habitudes de jeu et à comparer le risque de problèmes générés par le jeu dans les différents sous-groupes.
Un échantillon de 5 062 personnes, représentatif des internautes français âgés de 18 à 65 ans, a été recruté. Les participants ont répondu à une enquête en ligne autoadministrée, comportant une série de questions sur leurs caractéristiques sociodémographiques, leurs habitudes de jeu et les problèmes liés à ces pratiques (IGDS9-SF).
L’analyse suggère l’existence de quatre classes de joueurs de jeux F2P : des joueurs avec une pratique peu intensive (classe I, 44,5 % de l’échantillon) ; des joueurs qui jouent peu intensivement, mais avec une plus grande probabilité de pratiquer des jeux d’argent (classe II, 6,5 %) ; des joueurs avec des pratiques de jeu plus intensives (classe III, 33,8 %) et des joueurs intensifs également plus enclins à dépenser de l’argent au cours du jeu et à pratiquer des jeux d’argent (classe IV, 15,2 %).
Les résultats indiquent que ces classes ont des profils sociodémographiques différents et que la prévalence de problèmes liés au jeu est plus élevée pour les classes II et III par rapport à la classe I, et pour la classe IV par rapport à toutes les autres classes. La dépense d’argent au cours du jeu associée à une pratique concomitante de jeux d’argent serait un marqueur fort d’une pratique problématique de jeu free-to-play.
Mots-clés :
- jeu,
- jeu problématique,
- épidémiologie,
- addiction
Abstract
The development of the Internet and digital technologies has led to the expansion of online gaming and its dominant model: Free-to-Play (F2P) games. A large majority of people play these games recreationally, but gaming can have harmful effects on some vulnerable individuals or their relatives.
This study hypothesizes that the population of Free-to-Play gamblers is not a homogeneous group and aims to identify, through a latent class analysis, subgroups of gamers based on their gaming patterns and to compare the risk of gaming disorder in the different subgroups.
A sample of 5,062 people, representative of French Internet users aged 18 to 65, was recruited. Participants completed a self-administered online survey with a series of questions about their socio-demographic characteristics, gambling patterns and gaming disorder (IGDS9-SF).
The analysis suggests the existence of four classes of F2P gamers: low intensity gamers (class I, 44.5% of the sample); low intensity gamers with a higher probability of gambling (class II, 6.5%); high intensity gamers (class III, 33.8%) and high intensity gamers with a higher probability of spending money on gaming and gambling (class IV, 15.2%)
The results indicate that these classes have different socio-demographic profiles and that the prevalence of gambling-related problems is higher for classes II and III than for class I, and for class IV than for all other classes. Spending money while playing F2P games associated with a practice of gambling would be a strong marker of gaming disorder.
Keywords:
- gaming,
- gaming disorder,
- epidemiology,
- addiction
Resumen
El desarrollo de internet y de las tecnologías numéricas condujo a la expansión de un juego en línea y de su modelo dominante: los juegos gratuitos (Free-to-Play, F2P). Una gran mayoría de las personas que lo juegan lo hacen de manera recreativa, pero la práctica de estos juegos puede tener efectos nefastos para algunas personas vulnerables o sus prójimos.
Este estudio se basa en la hipótesis de que la población de jugadores de “Free-to-Play” no es un grupo homogéneo y tiene como objetivo la identificación, mediante un análisis de clases latentes, de los subgrupos de jugadores en función de sus hábitos de juego y a comparar el riesgo de problemas generados por el juego en los diferentes subgrupos.
Se reclutó una muestra de 5.062 personas, representantes de los internautas franceses cuyas edades comprenden entre los 18 y 65 años. Los participantes respondieron a una encuesta en línea auto administrada consistente en una serie de preguntas sobre sus características sociodemográficas, sus costumbres de juego y los problemas relacionados con estas prácticas (IGDS9-SF).
El análisis sugiere la existencia de cuatro clases de jugadores de juegos F2P: jugadores con una práctica poco intensiva (clase I, 44,5% de la muestra); jugadores que juegan poco intensivamente pero con una probabilidad más grande de usar juegos por dinero (clase II, 6,5%); los jugadores con prácticas de juego más intensivas (clase III, 33,8%) y los jugadores intensivos que al mismo tiempo están más inclinados a gastar dinero durante un juego y a usar juegos por dinero (Clase IV, 15,2%).
Los resultados indican que estas clases tienen perfiles sociodemográficos diferentes y que el predominio de problemas relacionados con el juego es más elevado para las clases II y III con respecto a la clase I y asimismo más elevado para la clase IV con respecto a todas las demás. El gasto de dinero durante un juego relacionado con una práctica simultánea de juego por dinero sería un indicador fuerte de un uso problemático de juego Free-to-Play.
Palabras clave:
- juego,
- juego problemático,
- epidemiología,
- adicción
Appendices
Bibliographie
- Aarseth, E., Bean, A. M., Boonen, H., Colder Carras, M., Coulson, M., Das, D., Deleuze, J., Dunkels, E., Edman, J., Ferguson, C. J., Haagsma, M. C., Helmersson Bergmark, K., Hussain, Z., Jansz, J., Kardefelt-Winther, D., Kutner, L., Markey, P., Nielsen, R. K. L., Prause, N., … Van Rooij, A. J. (2017). Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. Journal of Behavioral Addictions, 6(3), 267‑270. https://doi.org/10.1556/2006.5.2016.088
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.) (American Psychiatric Publishing.).
- Bányai, F., Griffiths, M. D., Demetrovics, Z. et Király, O. (2019). The mediating effect of motivations between psychiatric distress and gaming disorder among esport gamers and recreational gamers. Comprehensive Psychiatry, 94, 152117. https://doi.org/10.1016/j.comppsych.2019.152117
- Billieux, J., Thorens, G., Khazaal, Y., Zullino, D., Achab, S. et Van der Linden, M. (2015). Problematic involvement in online games: A cluster analytic approach. Computers in Human Behavior, 43, 242‑250. https://doi.org/10.1016/j.chb.2014.10.055
- Brooks, G. A. et Clark, L. (2019). Associations between loot box use, problematic gaming and gambling, and gambling-related cognitions. Addictive Behaviors, 96, 26‑34. https://doi.org/10.1016/j.addbeh.2019.04.009
- Costes, J.-M. et Bonnaire, C. (2022). Spending Money in Free-to-Play Games: Sociodemographic Characteristics, Motives, Impulsivity and Internet Gaming Disorder Specificities. International Journal of Environmental Research and Public Health, 19(23), 15709. https://doi.org/10.3390/ijerph192315709
- CREDOC. (2019). rapport-barometre-num-2019.pdf. ARCEP. https://www.arcep.fr/uploads/tx_gspublication/rapport-barometre-num-2019.pdf
- Dreier, M., Wölfling, K., Duven, E., Giralt, S., Beutel, M. E. et Müller, K. W. (2017). Free-to-Play: About addicted Whales, at risk Dolphins and healthy Minnows. Monetarization design and Internet Gaming Disorder. Addictive Behaviors, 64, 328‑333. https://doi.org/10.1016/j.addbeh.2016.03.008
- Gainsbury, S. M., King, D. L., Russell, A. M. T. et Delfabbro, P. (2016). Who Pays to Play Freemium Games? The Profiles and Motivations of Players Who Make Purchases Within Social Casino Games. Journal of Behavioral Addictions, 5(2), 221‑230. https://doi.org/10.1556/2006.5.2016.031
- Garea, S. S., Drummond, A., Sauer, J. D., Hall, L. C. et Williams, M. N. (2021). Meta-analysis of the relationship between problem gambling, excessive gaming and loot box spending. International Gambling Studies, 21(3), 460‑479. https://doi.org/10.1080/14459795.2021.1914705
- Gibson, E., Griffiths, M. D., Calado, F. et Harris, A. (2022). The relationship between videogame micro-transactions and problem gaming and gambling: A systematic review. Computers in Human Behavior, 131, 107219. https://doi.org/10.1016/j.chb.2022.107219
- Goh, C., Jones, C. et Copello, A. (2019). A Further Test of the Impact of Online Gaming on Psychological Wellbeing and the Role of Play Motivations and Problematic Use. Psychiatric Quarterly, 90(4), 747‑760. https://doi.org/10.1007/s11126-019-09656-x
- Griffiths, M. (2003). Internet Gambling: Issues, Concerns, and Recommendations. CyberPsychology & Behavior, 6(6), 557‑568. https://doi.org/10.1089/109493103322725333
- Griffiths, M. D. et Nuyens, F. (2017). An Overview of Structural Characteristics in Problematic Video Game Playing. Current Addiction Reports, 4(3), 272‑283. https://doi.org/10.1007/s40429-017-0162-y
- Griffiths, M. D., van Rooij, A. J., Kardefelt-Winther, D., Starcevic, V., Király, O., Pallesen, S., Müller, K., Dreier, M., Carras, M., Prause, N., King, D. L., Aboujaoude, E., Kuss, D. J., Pontes, H. M., Lopez Fernandez, O., Nagygyorgy, K., Achab, S., Billieux, J., Quandt, T., … Demetrovics, Z. (2016). Working towards an international consensus on criteria for assessing internet gaming disorder: a critical commentary on Petry et al . (2014): Assessment of internet gaming disorder. Addiction, 111(1), 167‑175. https://doi.org/10.1111/add.13057
- Hamari, J. et Keronen, L. (2017). Why do people buy virtual goods: A meta-analysis. Computers in Human Behavior, 71, 59‑69. https://doi.org/10.1016/j.chb.2017.01.042
- Hellström, C., Nilsson, K. W., Leppert, J. et Åslund, C. (2012). Influences of motives to play and time spent gaming on the negative consequences of adolescent online computer gaming. Computers in Human Behavior, 28(4), 1379‑1387. https://doi.org/10.1016/j.chb.2012.02.023
- Hilgard, J., Engelhardt, C. R. et Bartholow, B. D. (2013). Individual differences in motives, preferences, and pathology in video games: the gaming attitudes, motives, and experiences scales (GAMES). Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00608
- Horti, S. (2017, 26 novembre). Revenue from PC free-to-play microtransactions has doubled since 2012. PC Gamer. https://www.pcgamer.com/revenue-from-pc-free-to-play-microtransactions-has-doubled-since-2012/
- Howard, K. T. (2019). Free-to-Play or Pay-to-Win? Casual, Hardcore, and Hearthstone. Transactions of the Digital Games Research Association, 4(3). https://doi.org/10.26503/todigra.v4i3.103
- Johnson, E. (2014, 26 février). A Long Tail of Whales: Half of Mobile Games Money Comes From 0.15 Percent of Players. Recode, 4.
- King, D. L., Gainsbury, S. M., Delfabbro, P. H., Hing, N. et Abarbanel, B. (2015). Distinguishing between gaming and gambling activities in addiction research. Journal of Behavioral Addictions, 4(4), 215‑220. https://doi.org/10.1556/2006.4.2015.045
- Laconi, S., Pirès, S. et Chabrol, H. (2017). Internet gaming disorder, motives, game genres and psychopathology. Computers in Human Behavior, 75, 652‑659. https://doi.org/10.1016/j.chb.2017.06.012
- Legner, L., Eghtebas, C. et Klinker, G. (2019, 17 octobre). Persuasive Mobile Game Mechanics For User Retention. CHI PLAY ’19: The Annual Symposium on Computer-Human Interaction in Play, Barcelona Spain (p. 493‑500). https://doi.org/10.1145/3341215.3356261
- Lelonek-Kuleta, B. et Bartczuk, R. P. (2021). Online Gambling Activity, Pay-to-Win Payments, Motivation to Gamble and Coping Strategies as Predictors of Gambling Disorder Among e-sports Bettors. Journal of Gambling Studies, 37(4), 1079‑1098. https://doi.org/10.1007/s10899-021-10015-4
- Lelonek-Kuleta, B., Bartczuk, R. P. et Wiechetek, M. (2021). Pay for play – Behavioural patterns of pay-to-win gaming. Computers in Human Behavior, 115, 106592. https://doi.org/10.1016/j.chb.2020.106592
- Linzer, D. A. et Lewis, J. B. (2011). poLCA : An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10). https://doi.org/10.18637/jss.v042.i10
- Lovell, N. (2011, 16 novembre). Whales, Dolphins and Minnows – the beating heart of a free-to-play game. gamesbrief.com. https://www.printfriendly.com/p/g/ndzRzY
- Macey, J. et Hamari, J. (2022). Gamblification: A definition. New Media & Society, 146144482210839. https://doi.org/10.1177/14614448221083903
- Marder, B., Gattig, D., Collins, E., Pitt, L., Kietzmann, J. et Erz, A. (2019). The Avatar’s new clothes: Understanding why players purchase non-functional items in free-to-play games. Computers in Human Behavior, 91, 72‑83. https://doi.org/10.1016/j.chb.2018.09.006
- McKinney, J. (2017, 17 décembre). The Rise of Pay to Win in Video Games. Odysee, 15.
- Moudiab, S. et Spada, M. M. (2019). The relative contribution of motives and maladaptive cognitions to levels of Internet Gaming Disorder. Addictive Behaviors Reports, 9, 100160. https://doi.org/10.1016/j.abrep.2019.100160
- Nieborg, D. B. (2016). App Advertising: The Rise of the Player Commodity. Dans Explorations in Critical Studies of Advertising (Routledge, p. 28‑41).
- Nielsen, R. K. L. (2018). Are Loot Boxes Gambling? Random reward mechanisms in video games. Authors & Digital Games Research Association DiGRA, 20.
- Nylund, K. L., Asparouhov, T. et Muthén, B. O. (2007). Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Structural Equation Modeling : A Multidisciplinary Journal, 14(4), 535‑569. https://doi.org/10.1080/10705510701575396
- Organisation mondiale de la santé. (2018, septembre). Trouble du jeu vidéo. WHO. https://www.who.int/fr/news-room/questions-and-answers/item/gaming-disorder
- Petry, N. M., Rehbein, F., Gentile, D. A., Lemmens, J. S., Rumpf, H.-J., Mößle, T., Bischof, G., Tao, R., Fung, D. S. S., Borges, G., Auriacombe, M., González Ibáñez, A., Tam, P. et O’Brien, C. P. (2014). An international consensus for assessing internet gaming disorder using the new DSM-5 approach: Internet gaming disorder. Addiction, 109(9), 1399‑1406. https://doi.org/10.1111/add.12457
- Pontes, H. M. et Griffiths, M. D. (2015). Measuring DSM-5 internet gaming disorder: Development and validation of a short psychometric scale. Computers in Human Behavior, 45, 137‑143. https://doi.org/10.1016/j.chb.2014.12.006
- Reza, A., Chu, S., Khan, Z., Nedd, A., Castillo, A. et Gardner, D. (2019). Skins for Sale : Linking Player Identity, Representation, and Purchasing Practices. Dans N. G. Taylor, C. Christian-Lamb, M. H. Martin et B. Nardi (dir.), Information in Contemporary Society (vol. 11420, p. 124‑131). Springer International Publishing. https://doi.org/10.1007/978-3-030-15742-5_11
- Şalvarlı, Ş. İ. et Griffiths, M. D. (2022). The Association Between Internet Gaming Disorder and Impulsivity: A Systematic Review of Literature. International Journal of Mental Health and Addiction, 20(1), 92‑118. https://doi.org/10.1007/s11469-019-00126-w
- Sanders, J. et Williams, R. (2019). The Relationship Between Video Gaming, Gambling, and Problematic Levels of Video Gaming and Gambling. Journal of Gambling Studies, 35(2), 559‑569. https://doi.org/10.1007/s10899-018-9798-3
- Savard, A.-C., Kairouz, S. et Reynolds, J. (2018). Free to Play ou Free for all? La régulation des jeux hybrides. Addiction(s) : Recherches et pratiques, (n°3 « Régulation(s) : conjuguer intérêts et associer les ompétences »), 40‑43.
- Schimmenti, A. et Caretti, V. (2010). Psychic retreats or psychic pits?: Unbearable states of mind and technological addiction. Psychoanalytic Psychology, 27(2), 115‑132. https://doi.org/10.1037/a0019414
- SELL. (2020). L’essentiel du jeu video : Bilan du marché français 2019.
- Steinmetz, F., Fiedler, I., von Meduna, M. et Ante, L. (2021). Pay-to-Win Gaming and its Interrelation with Gambling: Findings from a Representative Population Sample. Journal of Gambling Studies, 38(3), 785‑816. https://doi.org/10.1007/s10899-021-10042-1
- Tomić, N. Z. (2019). Economic model of microtransactions in video games. Journal of Economic Science Research, 1(1). https://doi.org/10.30564/jesr.v1i1.439
- von Meduna, M., Steinmetz, F., Ante, L., Reynolds, J. et Fiedler, I. (2020). Loot boxes are gambling-like elements in video games with harmful potential: Results from a large-scale population survey. Technology in Society, 63, 101395. https://doi.org/10.1016/j.techsoc.2020.101395
- Zendle, D. et Cairns, P. (2018). Video game loot boxes are linked to problem gambling: Results of a large‑scale survey. PLOS ONE, 13(11), e0206767. https://doi.org/10.1371/journal.pone.0206767
- Zendle, D., Meyer, R. et Ballou, N. (2020). The changing face of desktop video game monetisation: An exploration of exposure to loot boxes, pay to win, and cosmetic microtransactions in the most-played Steam games of 2010-2019. PLOS ONE, 15(5), e0232780. https://doi.org/10.1371/journal.pone.0232780
- Zendle, D., Meyer, R., Cairns, P., Waters, S. et Ballou, N. (2020). The prevalence of loot boxes in mobile and desktop games. Addiction, 115(9), 1768‑1772. https://doi.org/10.1111/add.14973