
All Rights Reserved © Canadian University Music Society / Société de musique
des universités canadiennes, 1982

This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 10/18/2024 11:06 a.m.

Canadian University Music Review
Revue de musique des universités canadiennes

The Musical Control of Sound Color
A. Wayne Slawson

Number 3, 1982

URI: https://id.erudit.org/iderudit/1013828ar
DOI: https://doi.org/10.7202/1013828ar

See table of contents

Publisher(s)
Canadian University Music Society / Société de musique des universités
canadiennes

ISSN
0710-0353 (print)
2291-2436 (digital)

Explore this journal

Cite this article
Slawson, A. (1982). The Musical Control of Sound Color. Canadian University
Music Review / Revue de musique des universités canadiennes, (3), 67–79.
https://doi.org/10.7202/1013828ar

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/cumr/
https://id.erudit.org/iderudit/1013828ar
https://doi.org/10.7202/1013828ar
https://www.erudit.org/en/journals/cumr/1982-n3-cumr0423/
https://www.erudit.org/en/journals/cumr/


THE MUSICAL CONTROL OF SOUND COLOR* 

A. Wayne Slawson 

In a recent article (see Slawson 1981), I hazarded a set of 
claims that may be considered a theory of an aspect of musical 
timbre called sound color. In the present paper I shall summarize 
those claims briefly, develop them a bit further, and than attempt 
to show how one could apply some of them by discussinghowmy 
composition Colors was structured. 

Invariance of Sound Color 
Musical sounds nearly all have such well-known properties 

as duration, pitch, and loudness. In addition, as we analyze what 
we hear a bit more closely, we realize that many of them have more 
arcane "attributes" having to do with such things as the temporal 
course of a sound's intensity envelope, the regularity versus the 
randomness of its spectrum, its "grain" or "flutter," etc. In addi
tion to all these features, according to the theory I am advocating, 
a sound has a color that can be independently controlled and 
manipulated by a composer. 

Like pitch, loudness, etc., sound color (or simply color) is 
both a psychological attribute and a musical "element." The term 
color has been used to refer to mixtures of instrumental sounds, 
but I mean by it something more abstract and more specific — 
something that is not tied to the sounds of musical instruments. I 
have discussed the relationship of sound color to the sounds of 
musical instruments earlier (see ibid.) and will not dwell on it 
here. Suffice it to say that my use of the term is not inconsistent 

*I am grateful to Robert Morris for his many provocative discussions while I was 
working on the theory and to Donald Beikman whose comments on drafts of this 
paper improved it considerably. The initial work on the theory was supported in 
part by a grant from the American Council of Learned Societies and by the 
University of Pittsburgh, for which I am also grateful. 

Canadian Universi ty Music Review, No. 3, 1982. 
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with at least certain ways that the sounds of different instru
ments have been discussed (e.g., see Cogan & Escot 1976). The 
theory is probably most directly concerned with electronic 
music, but it is stated ingeneral terms and may have considerably 
broader applicability. 

Now for the theory itself. Sound color is associated, not with 
the spectrumofa sound, but withits spectrum envelope. The first, 
simplest, and empirically best-established of the theory's claims 
is the rule: 

Rule 1: to hold the color of a sound invariant, hold its 
spectrum envelope invariant. 

Now the concept of a spectrum envelope depends on a kind of 
dual process model of the production of sound. In this model, a 
sound is the result of a source modified by a filter. Figure 1 
illustrates how a particular kind of regular (harmonic) source is 
modified by a filter that has two prominent "pass bands," reson
ances, or "formants" — two "hills" that reinforce the source 
frequencies falling within them. The surrounding "valleys" mute 
the components of the source in their frequency regions. 

Figure 1 
* The Source/Filter Model of Sound Production; the filter modifies energy 

reaching it from the source according to the filter's spectrum envelope 

For all its importance in our knowledge of, for example, the 
acoustics of speech production (the modern "classic" in this field 
is Fant 1960), the spectrum envelope may seem a bit ephemeral. It 
can be said to "belong to" a resonant object or cavity, but like that 
object or cavity, it can make no sound on its own (for an enlighten
ing discussion see Huggins 1952). Some mechanical or acoustical 
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energy must excite the object or cavity and only then does its 
spectrum envelope become detectable in the resulting sound. 
Rule 1 of the theory is equivalent to saying: keep the physical 
properties of a sounding object or the shape of a cavity constant 
and the sounds you make by exciting the object or cavity willhave 
constant sound color. 

The most common everyday "use" of sound color is in vowel 
sounds. A man, a women, or a child speaking, shouting, or 
whispering the "same" vowel sound is exploiting the invariance 
of sound color that is claimed by Rule 1 of the theory. Filters are 
used in nearly all electronic music. A particularly striking way in 
which Rule 1 is applied in that music involves the use of invariant 
filters to link, by means of the resulting invariant sound color, 
sections of a work having contrasting sound sources. 

Many electronic pieces feature a great many different sound 
colors drawn from a rich and varied musical "space." My second 
claim represents an attempt to postulate a theoretical structure 
for that space. 

The Dimensions of Sound Color 
Rule 1 tells us how to keep a particular sound color constant, 

but it does not tell us how different sound colors relate to each 
other. Borrowing freely from a well-known phonetic theory (see 
Chomsky & Halle 1968), I have proposed a series of dimensions 
that appear to govern certain kinds of invariances among differ
ent sound colors. There are a number of these dimensions in the 
full-blown version of the theory, but the main ones are ACUTENESS, 
OPENNESS, SMALLNESS, and LAXNESS. Before discussing the dimen
sions in detail, let me clarify what I mean by "relating" sound 
colors and "certainkinds of invariances"insoundcolorby stating 
Rule 2 of the theory: 

Rule 2: To change a color while holding it invariant with 
respect to one of the dimensions, arrange to move through the 
color space along contours of equal value associated with 
that dimension. 

The key to Rule 2 is of course the actual location of those 
"contours of equal value." I have plotted some of them in Figure 2. 
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Figure 2 
Equal-Value Contours of Sound Color Dimensions; the arrows indicate the 

direction of increasing value for each dimension; the lighter lines are examples 
of equal-value contours 

The axes in this figure are, respectively, the center frequencies of 
the first and second resonances — the peaks on the hills of Figure 
1. The few representative vowels in the figures provide a rough 
orientation to the space. Narrowing down for the moment on just 
the dimensions of ACUTENESsand OPENNESS, we can observe that 
the [u]-like color is low in ACUTENESsand OPENNESS whereas [ae] 
(as in "had") is highly ACUTE and highly OPEN. The [i]-like color is 
highly ACUTE and non-OPEN, in contrast to [aw] (asinufog"),which 
is non-ACUTE and highly OPEN. 

Now we are ready to see how Rule 2 is applied. Suppose we 
wanted to hold OPENNESS constant and high. Following Rule 2, we 
could move vertically along the rightmost equal-oPENNESS con
tour changing color between the ACUTE [ae] and the non-ACUTE 
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[aw] without changing OPENNESS. We would be holding one aspect 
of sound color — OPENNESS — constant while changing other 
aspects. 

The SMALLNESSdimension has equal-value contours parallel 
to the northwest to southeast diagonal. The SMAixest color is that 
associated with [ae]; the least SMALL, with [u]. Since [i], the neutral 
color, and [aw] all fall on the same equal- SMALLNESS contour, they 
all have the same — in this case, medium — SMALLNESS value. 

The LAXNESS dimension is an interesting one, whose equal-
value contours are quite unlike those of the other dimensions. 
They cut through a whole raft of quite different colors. What is 
captured by LAXNESS is analogous to the relations between long 
vowels, their short versions, and finally the so-called "neutral" 
vowel. Starting with the least LAX contour, we might traverse the 
colors corresponding to the vowels in "beet," "bat," "ought," and 
"who'd." A similar trip around the contour of medium LAXNESS 
would take us through colors like those in the words "bit," "bet," 
"hut," and "hood." Finally the point of maximal LAXNESS — the 
innermost "contour" — reduces all colors to the same bland, 
neutral color toward which vowels tend when they are in 
unstressed syllables. 

There is some empirical evidence that we perceive sound 
according to the dimensions of AcuTENESsand OPENNESS and some 
rather indirect support on rational grounds for SMALLNESS (see 
Slawson 1981 for a discussion of this evidence). There is precious 
little independent support for LAXNESS, but influenced by some 
informal experiments with synthesized patterns of colors of 
differing LAXNESS, I have been led to believe that LAXNESS has both 
psychological reality and musical potential.* 

A good deal of empirical study is needed to establish the 
psychoacoustic status of the dimensions and, most importantly, 
to locate the equal value contours with some precision. It appears, 
in the meantime, that the dimensions — with all their present 
imprecision of definition — may be of considerable use to com
posers, particularly of electronic music. In some sense one can 
argue that they already have been. To cite only a single, striking 
example, consider the opening of Milton Babbitt's Ensembles for 
Synthesizer. The static sounds that frame the introduction of this 
work fit very nicely into the two-dimensional subspace of color 

"Three examples of these experimental tapes were played at the Symposium. 
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consisting of ACUTENESsand oPENNESsand, at the same time, they 
seem to include both LAX and non-LAXSounds. 

Operations on Sound Color 
The final claim, or set of claims, of the theory has to do with 

ways of controlling changes in sound colors. The idea is to define 
operations on sets of sound colors that transform them while 
preserving certain relations among the members of the sets. The 
operations on sound color are analogous to those we use to 
transform pitch classes. A color can be transposed and it can be 
inverted. In sound color space, however, these operations are 
performed with respect to a dimension. It follows that there are a 
good many more such operations on sound color than there are on 
pitch classes. 

Transposition 
Rule 3a defines transposition of sound color: 

Rule 3a: To transpose a color with respect to a dimen
sion, shift the color in the direction of the dimension (perpen
dicular to its equal value contours). When the boundary of the 
space is reached, "wrap-around" to the opposite boundary 
and continue shifting in the same direction. 

This rather messy rule represents a situation that is quite 
analogous to transposition of pitch. With pitch we move in the 
direction of a (single) dimension until we reach the (octave) 
boundary and then we "wrap-around" and start at the opposite 
boundary (the next octave). The perceptually strong equiva
lence of the "same" pitches in different octaves make transposi
tion of pitch a musical operation of great value. The boundaries 
are not nearly as clear in the case of sound color and there is no 
such thing as octave equivalence in the color realm. In fact 
transposition of a sequence of sound colors can be rather costly 
in terms of lost relationships among members of the sequence. 

Figure 3 illustrates transposition of a sequence of colors 
(represented by their nearest vowel-like equivalents) in which 
the "wrap-around" feature does not need to be invoked and the 
invariant relations among the colors are rather well preserved. 
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Figure 3 
Transposition with Respect to ACUTENESSand OPENNESS 

Inversion 
Inversion of sound color is carried out, in each dimension, 

with reference to the neutral, maximally LAX color. For each 
dimension (except LAXNESS itself, where inversion is unde
fined), the equal-value contour that passes through the neutral 
color is defined as the axis of inversion with respect to that 
dimension. Taking these axes as the locii of "zero" value for 
each dimension, we can assign positive and negative values to 
the equal-value contours on opposite sides of the "zero" con
tour. Given this implied metric in the sound color space, we can 
define inversion rather simply: 

Rule 3b: To invert a sound color with respect to a 
dimension, complement its value on that dimension. 

Once more, let me illustrate with an example. Suppose we 
have the sequence of colors corresponding to the vowels [u, i, 
aw, ae] that we wish to invert with respect to ACUTENESS, keep
ing the OPENNESS of each of the sounds the same. Notice that the 
[u] and [aw] have strongly negative values of ACUTENESS (they 
are far "below" the axis of inversion), and that [i] and [ae] have 
strongly positive values. Complementing these ACUTENESS values 
results in the ACUTENESS-inverted sequence [i, u, ae, aw]. To take 
another example, suppose we wish to invert the original sequence 
with respect to SMALLNESS. The result is [ae, i, aw, u], Since [i] 
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and [aw] are on the "zero" SMALLNESS contour, they invert into 
themselves. 

Although evident only in arrays larger than the four-color 
sets, inversion retains to a greater degree "intervallic" relation
ships than does transposition. In contrast to the case of the 
analogous pitch operations, the inversion of sound color seems 
to be a somewhat more "natural" transformation than is sound 
color transposition. 

I hope this brief summary has given at least some flavor of 
the sound color theory I am developing. For the rest of this 
paper I would like to concentrate on ways that I discovered I 
could use the color operations in a musical composition. 

Musical Operations on a Nine-Color Set 
I based the work, Colors, on a series of nine sound colors 

corresponding roughly to the vowels [oh ("boat"), ee ("mate"), 
uu, aw, ii, ae, oe (Geman o-umlaut), aa ("pot"), and ne (neu
tral)]. This set of nine colors, in its unordered form, is one of 
only a small number that can be thought of as normal. 

What I mean by a normal set is one for which the opera
tions (except for transpositions in LAXNESS) transform members 
of the set into members of the same set. Figure 4 shows this 
nine-color set in terms of the nearest vowel equivalents. 

Figure 4 
The Color Series from Colors and an Inversion; the order of the nine-color series 
is specified by the directed lines connecting the vowel equivalents in the plot on 

the left; the plot on the right is the OPENNESS inversion of the original 
series; the ordinate is the [perceived] ACUTENESS dimension; the abscissa, 

the OPENNESS dimension 
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It is fairly easy to verify normality for this set and for any other 
square array of colors. While in principle there are many such 
arrays, only the first few squares result in color sets whose 
members would be perceptually distinguishable. A few other 
symmetrical arrangements of colors are normal — including at 
least one twelve-color set — but an investigation of them is 
beyond the scope of this paper. 

Figure 4 also illustrates one of the operations that is well-
defined in this nine-color set: inversion with respect to OPEN
NESS. Notice how the succession of "opposite" colors in consecu
tive pairs in the original sequence is transformed into similarly 
opposite colors in the inversion. The ACUTENESS inversion also 
preserves that relationship. It can be verified that SMALLNESS 
inversion and transposition with respect to all the dimensions 
except for LAXNESS are well-defined in this set. 

The Composition of Colors 
The test of all this theorizing about sound color is of 

course in the composing. My own compositional work has 
included a number of studies and experiments and, as of Janu
ary 1981, one extended piece. Colors is a quadraphonic tape 
piece that was realized in the Computer and Electronic Music 
Studio at the University of Pittsburgh. It is in the form of a set 
of eleven variations on a single rather involved bipartite struc
ture of seven contrapuntal strands of sound colors. The second 
half of that basic structure — the "theme" — is the retrograde of 
the first. Without attempting a complete description of the 
structure, let me indicate a few details that will illustrate my 
approach, in this piece at least, to composition with sound 
color. 

Combinatoriality and Color Aggregates 
I have been attracted to certain techniques of twelve-tone 

music in my music for instruments, so it was natural for me to 
attempt to apply similar techniques in the realm of sound color. 
In particular, I sought an analogy to the method of combining 
different versions of a pitch-class series known as combinator-
iality (see Starr & Morris 1977). 

In this method, invented by Schoenberg, two or more ver
sions of a twelve-tone row are lined up more or less like sepa
rate contrapuntal voices in such a way that all twelve tones are 
present in the vertical structure before any tone is repeated. In 
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the extension of the method first used by Babbitt and extended 
and formalized by Starr and Morris, these vertical "aggregates" 
can be formed quite freely from any of the contemporaneous 
rows. For example, in a five-row structure the first aggregate 
might be made up of five pitch classes from the first row, two 
from the second, none at all from the third and fourth, and four 
from the fifth row. A great deal of contrapuntal flexibility is 
provided by such an arrangement, while preserving the kind of 
integration of pitch materials that makes the twelve-tone 
method attractive in the first place. 

The basic idea of combinatoriality can be translated quite 
directly into the structuring of sound color, provided that a set 
of discrete colors is to be used. Suppose, for example, that we 
attempt to combine the original set as displayed in Figure 4 
with its OPENNESS inversion. We find that the combination is 
impossible because, in this particular set, the OPENNESS inver
sion results in a simple permutation of pairs, leaving colors in 
nearly the same order in both series. By the same token, the 
original can be combined easily with the retrograde of the OPEN
NESS inversion. The first four colors of the original series and 
the first five colors of the retrograde OPENNESS inversion form 
the first of two aggregates of nine colors with the remaining 
colors from each of the series forming the second. This "combi
natorial matrix" is illustrated in Table I: 

Aggreg. 1 Aggreg. 2 
Original series : o e u aw : i ae oe a ne : 
Retro. Inv. O. : ne oe a i ae : u aw e o : 

Table 1 
A Two-Series, Two-Aggregate Combinatorial Matrix 

The swapping operation described by Starr and Morris 
can be applied to this matrix to produce another with quite 
different contrapuntal possibilities (Table II): 

Aggreg. 1 Aggreg. 2 
Original series : o e u aw i ae oe a ne : 
Retro. Inv. O. : ne oe a i ae u aw : e o : 

Table II 

Another Combinatorial Matrix 
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These combinations of the two versions of the basic series 

are interesting because of the possibilities that are presented 
for relating pairs across aggregate boundaries. For example, in 
the first matrix, the [i ae] in the first aggregate can be asso
ciated with the same pair in the second aggregate or, similarly, 
the pairs [u aw] in both aggregates can be related. 

The Basic Structure in Colors 
The structure of Colors is considerably more complicated. 

As mentioned above, the basic structure is made up of seven 
linear strands. Each half of the basic structure is a single com
binatorial matrix with a maximum of two linear versions of the 
series in each strand. Table III shows that combinatorial matrix: 

Table III 
The Color Combinatorial Matrix of Colors: 
the durations of each aggregate are relative, 
the first number applying to the first half of 

the basic structure, the second to the second half 
(when the matrix is presented in retrograde); 

the actual durations change from variation to variation; 
brackets enclose linear versions of the basic series 

The first aggregate is distinctive in that seven colors of the 
basic series are presented consecutively in a single strand. 
Since this matrix is used in reverse order for the second half of 
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the basic structure, the retrograde of that same sequence ends 
the basic structure — once more in a single voice. The begin
nings and endings of each variation are similar and distinctive 
as a result of this "color melody" derived from the structure of 
the first aggregate. 

Another consequence of the overall form of the basic 
structure is the juxtaposition of aggregate 9 and its retrograde 
at the middle of the structure. In many of the variations the [ae] 
color in the seventh strand punctuates the exact center of the 
structure — the single, prominent, usually low-pitched "note" 
serving both the direct and retrograded aggregates. 

A pair of features of the structure that serve as landmarks 
are aggregate 6 in the direct half of the structure and aggregate 
5 in the retrograded half. Here the single exception to strictness 
of the retrograde is a swapping of the [aw] between aggregates 
5 and 6 in the second half (indicated by the parentheses in 
Table III). These two aggregates are the "thickest" and most 
active of all because they are the only ones that have at least 
one representative from each of the strands and, at the same 
time, they are the briefest in duration in both halves of the 
structure. 

Of course, color is only one of the musical elements con
trolled in the work. But in general the pitches and the "character" 
of the sound — whether for example it is noise, frequency-
modulated, pulsed, etc. — serve to emphasize the basic color 
structure and to expose it in different ways. Throughout most of 
the work, the details, the fastest moving events, the "foreground," 
have to do with sound color, not with pitch or some other aspects 
of sound. 

I want to emphasize that the techniques I have used to 
compose Colors are by no means the only way of applying the 
theory of sound color. In particular, there is nothing to prevent a 
composer from using more "intuitive" methods while still 
exploiting the dimensional structure of the soundcolorspaceand 
the operations of color transposition and inversion. 

Conclusions and Perspectives 
I realize that as many questions as answers are raised by this 

theory of sound color. Among those that I find most interesting at 
the moment are such matters as how to extend the sound color 
space outside of the general frequency region of the vowels, how 
to use transposition in LAXNESsin a musically and theoretically 
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satisfying way, and how to relate color wi th pitch. Of course a 
great many psychoacoust ic quest ions are posed by the theory. I 
invite any and all who may be so inclined to join me in a t tempting 
to answer some of them. 

By no means am I the first to recognize the spectrum enve
lope as an important musical element (e.g., see Cogan & Escot 
1976). It has been exploited by many composers, par t icular ly of 
electronic music. I hope my theoretical work can contr ibute a 
little order and suggest some w a y s of controll ingcolor musically. 
I find this world of sound color a fascinating one, which I seem 
only to have sampled; I would be delighted if others are d r a w n to 
try their hands at it from their own perspect ives. 
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