Abstracts
Abstract
Teachers skilled in using generative artificial intelligence (GAI) have advantages in terms of increased productivity and augmented instructional capabilities. Alongside the rapid advancement of GAI, teachers require authentic learning opportunities to build the confidence and expertise necessary for engaging with these technologies creatively and responsibly. This article provides an illustrative case of preparing preservice and in-service teachers with the knowledge, skills, and mindsets to teach and create with GAI. Using a self-study method to investigate professional practices, we analyzed the curriculum, instruction, and assessment in an upper-level undergraduate course in multimedia design and production. Thirty-five teachers engaged in experiential activities focussed on developing artificial intelligence (AI) literacy, alongside a collaborative assignment to co-author an open-access textbook, Teaching and Creating With Generative Artificial Intelligence. To support equitable and inclusive access to the educational benefits offered by AI, the Student Artificial Intelligence Literacy (SAIL) framework was developed. SAIL facilitates student AI literacy through curriculum engagement and three distinct types of interactions: cognitive, socio-emotional, and instructor-guided. Building on lessons learned from the COVID-19 pandemic regarding the issues with technology training for teachers in Canada, five recommendations are offered to facilitate the meaningful integration of AI literacy in teacher education programs.
Keywords:
- AI literacy,
- teacher education,
- instructional design,
- AI education,
- generative AI
Résumé
Les enseignants qui maîtrisent l’intelligence artificielle générative (IAG) voient leur productivité et leurs capacités d’enseignement augmenter. En cette période d’évolution rapide de l’IAG, il est nécessaire d’offrir aux enseignants de réelles possibilités d’apprentissage en ce sens afin qu’ils acquièrent la confiance et l’expertise nécessaires à l’utilisation créative et réfléchie de ces technologies. Cet article présente un cas de figure illustrant l’acquisition par des enseignants en formation initiale et en poste de connaissances, de compétences et de l’état d’esprit nécessaires pour enseigner et créer à partir des outils d’intelligence artificielle. Nous avons analysé le programme ainsi que le type d’enseignement et d’évaluation d’un cours de premier cycle en conception et production multimédia, avec l’objectif d’étudier les pratiques professionnelles à partir d’une méthode d’auto-évaluation. Trente-cinq enseignants ont participé à des activités d’apprentissage par l’expérience axées sur le développement d’une culture de l’intelligence artificielle (IA), parallèlement à une collaboration en vue de la rédaction d’un manuel en libre accès, intitulé Teaching and Creating With Generative Artificial Intelligence (Enseigner et créer avec l’intelligence artificielle générative). Le cadre SAIL (Student Artificial Intelligence Literacy) a été créé pour favoriser un accès équitable et inclusif aux avantages éducatifs offerts par l’IA. SAIL facilite l’apprentissage de l’intelligence artificielle grâce à une implication dans le programme d’études et à trois types d’interactions distinctes : cognitive, socioémotionnelle et guidée par l’enseignant. À partir des leçons tirées de la pandémie de COVID-19 concernant les problèmes de formation à la technologie des enseignants au Canada, cinq recommandations sont proposées pour faciliter l’intégration réelle de la connaissance de l’IA dans les programmes de formation des enseignants.
Mots-clés :
- éducation à l’IA,
- littératie en IA,
- IA générative,
- conception pédagogique,
- formation des enseignants
Appendices
Bibliography
- Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics 2, 431–440. https://doi.org/10.1007/s43681-021-00096-7
- Amazon Web Services. (n.d.). What is artificial general intelligence? https://aws.amazon.com/what-is/artificial-general-intelligence/
- Bauschard, S. (2023, May 30). AI literacy: The immediate need and what it includes. Education Disrupted: Teaching and Learning in an AI World. https://stefanbauschard.substack.com/p/ai-literacy-the-immediate-need-and
- Bauschard, S. (2024, May 20). Microsoft Copilot will hear, see, and speak. Education Disrupted: Teaching and Learning in an AI World. https://stefanbauschard.substack.com/p/microsoft-copilot-will-hear-see-and?triedRedirect=true
- Bullock, S. M., & Butler, B. M. (2022). Reframing collaboration in self-study. In B. M. Butler & S. M. Bullock (Eds.), Learning through collaboration in self-study. Critical friendship, collaborative self-study, and self-study communities of practice (pp. 313–323). Springer. https://doi.org/10.1007/978-981-16-2681-4_22
- Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: A systematic literature review. International Journal of STEM Education, 10(1), Article 29. https://doi.org/10.1186/s40594-023-00418-7
- Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
- Ciampa, K., Wolfe, Z. M., & Bronstein, B. (2023). ChatGPT in education: Transforming digital literacy practices. Journal of Adolescent & Adult Literacy, 67 (3), 186–195. https://doi.org/10.1002/jaal.1310
- Cope, M., Kalantzis, M., & Searsmith, D. (2020). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229–1245. https://doi.org/10.1080/00131857.2020.1728732
- Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43–71. https://doi.org/10.1002/piq.21143
- ETAD 402. (2023). Teaching and creating with generative AI. University of Saskatchewan. https://openpress.usask.ca/etad402teachingandcreatingwithgenai/
- Francom, G. M., Lee, S. J., & Pinkney, H. (2021). Technologies, challenges and needs of K-12 teachers in the transition to distance learning during the COVID-19 pandemic. TechTrends, 65(4), 589–601. https://doi.org/10.1007/s11528-021-00625-5
- Hagerman, M., Beach, P., Cotnam-Kappel, M., & Hébert, C. (2020). Multiple perspectives on digital literacies research methods in Canada. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1159
- Hervieux, S., & Wheatley, A. (2020, March 11). The ROBOT test [Evaluation tool]. The LibrAIry. https://thelibrairy.wordpress.com/2020/03/11/the-robot-test/
- Hoechsmann, M., & Poyntz, S. (2017). Learning and teaching media literacy in Canada: Embracing and transcending eclecticism. Taboo: The Journal of Culture and Education, 12(1). https://doi.org/10.31390/taboo.12.1.04
- Hollister, B., Nair, P., Hill-Lindsay, S., & Chukoskie, L. (2022). Engagement in online learning: Student attitudes and behavior during COVID-19. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.851019
- Johnson, G. P. (2023). Don’t act like you forgot: Approaching another literacy “crisis” by (re)considering what we know about teaching writing with and through technologies. Composition Studies, 51(1), 169–175. https://compstudiesjournal.com/wp-content/uploads/2023/06/johnson.pdf
- Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313–338. https://www.learntechlib.org/primary/p/222363/
- Kim, J., Lee, H., & Cho, Y. H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. Education and Information Technologies, 27, 6069–6104. https://doi.org/10.1007/s10639-021-10831-6/
- Lock, J., Gill, D., Kennedy, T., Piper, S., & Powell, A. (2020). Fostering learning through making: Perspectives from the International Maker Education Network. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1160/
- Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In R. Bernhaupt, F. F. Mueller, D. Verweij, & J. Andres (Chairs), Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376727
- Loughran, J. (2005). Researching teaching about teaching: Self-study of teacher education practices. Studying Teacher Education, 1(1), 5–16. https://doi.org/10.1080/17425960500039777
- MacDowell, P., & Korchinski, K. (2023). A collaborative future: New roles of students and teachers learning and creating with generative AI. In S. Bauschard, A. Rao, P. Shah, & C. Shryock (Eds.), Chat(GPT): Navigating the impact of generative AI technologies on educational theory and practice (pp. 490–507). Pedagogy Ventures.
- MediaSmarts. (2023). Young Canadians in a wireless world, Phase IV: Digital media literacy and digital citizenship. https://mediasmarts.ca/research-reports
- Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in AI-powered educational technology and a professional development program to improve it. British Journal of Educational Technology, 53(4), 914–931. https://doi.org/10.1111/bjet.13232
- Park, J. (2023, May 29). A case study on enhancing the expertise of artificial intelligence education for pre-service teachers. Preprints, Article 2023052006. https://doi.org/10.20944/preprints202305.2006.v1
- Pedró, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994
- Prachagool, V., Nuangchalerm, P., & Yawongsa, P. (2022). Digital literacy of pre-service teachers in the period time of COVID-19 pandemic. Journal of Educational Issues, 8(2), 347–358. https://doi.org/10.5296/jei.v8i2.20135
- Robinson, L. E., Valido, A., Drescher, A., Woolweaver, A. B., Espelage, D. L., LoMurray, S., Long, A. C. J., Wright, A. A., & Dailey, M. M. (2022). Teachers, stress, and the COVID-19 pandemic: A qualitative analysis. School Mental Health, 15, 78–89. https://doi.org/10.1007/s12310-022-09533-2
- Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17
- Vanassche, E., & Kelchtermans, G. (2015). The state of the art in self-study of teacher education practices: A systematic literature review. Journal of Curriculum Studies, 47(4), 508–528. https://doi.org/10.1080/00220272.2014.995712
- Vaughan, N., & Lee Wah, J. (2020). The Community of Inquiry Framework: Future practical directions—Shared metacognition. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1154
- Zhang, K., & Aslan, A. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, Article 100025. https://doi.org/10.1016/j.caeai.2021.100025
- Zhao, L., Wu, X., & Luo, H. (2022). Developing AI literacy for primary and middle school teachers in China: Based on a structural equation modeling analysis. Sustainability, 14(21), Article 14549. https://doi.org/10.3390/su142114549