Abstracts
Abstract
Over the last decade, teachers in France have been increasingly pressured to use digital learning environments, and to shift from grade-based to skill-based assessment. Educational dashboards, which measure student input electronically, could foster such a transition by providing insights into learners’ performances. However, such dashboards could also foster data misinterpretation during the summative assessment process, should the indicators that they display be used without a proper understanding of what they reflect. This article presents a methodology to detect potential mistakes in the interpretation of the indicators in the context of inquiry-based learning. During the design of a learning environment, we analyzed, through analytics and classroom observations in primary and middle schools, the issues that could arise from the use of a dashboard. Our data suggest that the amount of information practitioners needed to collect to make indicators relevant was burdensome, making the dashboard unfit for assessment purposes at the scale of a classroom.
Keywords:
- dashboard,
- learning analytics,
- skill evaluation,
- case study
Résumé
Au cours de la décennie écoulée, les enseignants de France ont été de plus en plus poussés, d’une part, à adopter l’évaluation par compétences, et d’autre part, à utiliser des applications numériques. Les tableaux de bord qui mesurent les actions des utilisateurs de ces applications peuvent faciliter cette transition en apportant des indications sur les performances des apprenants. Néanmoins, dans une perspective d’évaluation sommative, une question se pose quant à la capacité des enseignants à interpréter correctement les indicateurs mis à leur disposition. Cet article présente une étude de cas à visée méthodologique qui a pour objectif d’identifier de potentiels problèmes d’interprétation d’indicateurs lors de l’évaluation d’une démarche d’investigation. Durant la conception d’une application numérique, le CNEC, nous avons analysé, par le moyen de traces d’interaction et d’une étude de terrain au collège et à l’école primaire, les éléments susceptibles d’affecter l’utilisation d’un tableau de bord. Nous montrons que la quantité de données à collecter pour rendre pertinent l’usage des indicateurs rend leur utilisation compliquée dans un contexte d’évaluation sommative à l’échelle d’une classe entière.
Mots-clés :
- tableau de bord,
- traces d’interaction,
- évaluation par compétences,
- étude de cas
Download the article in PDF to read it.
Download
Appendices
Bibliography
- Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., & Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. https://doi.org/10.1002/sce.10118
- Aguilar, S. J., Karabenick, S. A., Teasley, S. D., & Baek, C. (2021). Associations between learning analytics dashboard exposure and motivation and self-regulated learning. Computers & Education, 162, 104085. https://doi.org/10.1016/j.compedu.2020.104085
- Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470–489. https://doi.org/10.1016/j.compedu.2011.08.030
- Baker, R. S. (2011). Gaming the system: A retrospective look. Philippine Computing Journal, 6(2), 9–13.
- Baker, R. S., Corbett, A. T., & Koedinger, K. R. (2004) Detecting student misuse of intelligent tutoring systems. In C. J. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems (pp. 531–540). Springer.
- Baker, R. S., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., & Koedinger, K. (2008). Why students engage in “gaming the system” behavior in interactive learning environments. Journal of Interactive Learning Research, 19(2), 185–224. https://www.learntechlib.org/primary/p/24328/
- Bulletin Officiel de l’Education Nationale. (2007). Livret Personnel de Compétences [Personal Skills Gradebook]. Bulletin officiel n° 22. https://www.education.gouv.fr/bo/2007/22/MENE0754101D.htm
- Bulletin Officiel de l’Education Nationale. (2016). Évaluation des acquis scolaires des élèves et livret scolaire, à l’école et au collège [Assessment of learners’ skills and gradebooks for elementary and middle schools]. Bulletin officiel n° 3.
- Bywater, J. P., Chiu, J. L., Hong, J., & Sankaranarayanan, V. (2019). The teacher responding tool: Scaffolding the teacher practice of responding to student ideas in mathematics classrooms. Computers & Education, 139(1), 16–30. https://doi.org/10.1016/j.compedu.2019.05.004
- Cisel, M., & Barbier, C. (2021a). Mentoring teachers in the context of student-question-based inquiry: The challenges of the Savanturiers programme. International Journal of Science Education, 43(17), 2729–2745. https://doi.org/10.1080/09500693.2021.1986240
- Cisel, M., & Barbier, C. (2021b). Instrumentation numérique de la rédaction incrémentale : leçons tirées de la mise à l’épreuve du carnet numérique de l’élève chercheur [Iterative writing and digital technologies: Lessons drawn from an experimentation with the CNEC]. Canadian Journal of Education/Revue canadienne de l’éducation, 44(2), 277–307. https://doi.org/10.53967/cje-rce.v44i2.4445
- Cisel, M., & Baron, G. L. (2019). Utilisation de tableaux de bord numériques pour l’évaluation des compétences scolaires : une étude de cas [Using Digital Dashboards in the context of skill-based assessments in primary and secondary education: A case study]. Questions Vives. Recherches en éducation, (31). https://journals.openedition.org/questionsvives/3883
- Eurydice. (2012). Developing key competences at school in Europe: Challenges and opportunities for policy. Publications Office of the European Union. https://eacea.ec.europa.eu/national-policies/eurydice/content/developing-key-competences-school-europe-challenges-and-opportunities-policy_en
- Faber, J. M., Luyten, H., & Visscher, A. J. (2017). The effects of a digital formative assessment tool on mathematics achievement and student motivation: Results of a randomized experiment. Computers & Education, 106, 83–96. https:/doi.org/10.1016/j.compedu.2016.12.001
- Gobert, J. D., Pedro, M. S., Raziuddin, J., & Baker, R. S. (2013). From log files to assessment metrics: Measuring students’ science inquiry skills using educational data mining. Journal of the Learning Sciences, 22(4), 521–563.
- Han, J., Kim, K. H., Rhee, W., & Cho, Y. H. (2021). Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation. Computers & Education, 163, 104041. https://doi.org/10.1016/j.compedu.2020.104041
- Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
- Herranen, J., & Aksela, M. (2019). Student-question-based inquiry in science education. Studies in Science Education, 55(1), 1–36. https://doi.org/10.1080/03057267.2019.1658059
- Hu, Y.-H., Lo, C.-L., & Shih, S.-P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior, 36, 469–478. https://doi.org/10.1016/j.chb.2014.04.002
- Iandoli, L., Quinto, I., De Liddo, A., & Buckingham Shum, S. (2014). Socially augmented argumentation tools: Rationale, design and evaluation of a debate dashboard. International Journal of Human-Computer Studies, 72(3), 298–319. https://doi.org/10.1016/j.ijhcs.2013.08.006
- Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284. https://doi.org/10.1037/0033-2909.119.2.254
- Krueger, R. A. (2014). Focus groups: A practical guide for applied research. SAGE.
- Longo, C. (2010). Fostering creativity or teaching to the test? Implications of state testing on the delivery of science instruction. The Clearing House, 83(2), 54–57.
- McMullan, M., Endacott, R., Gray, M. A., Jasper, M., Miller, C. M. L., Scholes, J., & Webb, C. (2003). Portfolios and assessment of competence: A review of the literature. Journal of Advanced Nursing, 41(3), 283–294. https://doi.org/10.1046/j.1365-2648.2003.02528.x
- Mottus, A., Graf, S., & Chen, N.-S. (2015). Use of dashboards and visualization techniques to support teacher decision making. In T. Kinshuk & R. Huang (Eds.), Ubiquitous learning environments and technologies (pp. 181–199). Springer Berlin Heidelberg.
- Nielsen, J. (1993). Usability engineering. Morgan Kaufmann Publishers.
- Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
- Phillips, R., Maor, D., Cumming-Potvin, W., Roberts, P., Herrington, J., Preston, G., & Perry, L. (2011, December 4–7). Learning analytics and study behavior: A pilot study [Conference presentation]. ASCILITE 2011 Conference, Tasmania. https://researchrepository.murdoch.edu.au/id/eprint/6751/
- Quintana, C., Zhang, M., & Krajcik, J. (2005). A framework for supporting metacognitive aspects of online inquiry through software-based scaffolding. Educational Psychologist, 40(4), 235–244. https://doi.org/10.1207/s15326985ep4004_5
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Sanchez, E., Young, S., & Jouneau-Sion, C. (2017). Classcraft: From gamification to ludicization of classroom management. Education and Information Technologies, 22(2), 497–513. https://doi.org/10.1007/s10639-016-9489-6
- Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). Cambridge University Press.
- Scheffel, M., Drachsler, H., Toisoul, C., Ternier, S., & Specht, M. (2017). The proof of the pudding: Examining validity and reliability of the evaluation framework for learning analytics. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Data driven approaches in digital education (pp. 194–208). Springer.
- Schwendimann, B. A., Rodriguez Triana, M. J., Prieto Santos, L. P., Shirvani Boroujeni, M., Holzer, A. C., & Gillet, D. (2016). Understanding learning at a glance: An overview of learning dashboard studies. In LAK ’16: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (pp. 532–533). Association for Computing Machinery.
- Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2018). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. https://doi.org/10.1016/j.chb.2018.05.004
- Silvola, A., Näykki, P., Kaveri, A., & Muukkonen, H. (2021). Expectations for supporting student engagement with learning analytics: An academic path perspective. Computers & Education, 168, 104192. https://doi.org/10.1016/j.compedu.2021.104192
- Specht, M., Bedek, M., Duval, E., Held, P., Okada, A., & Stefanov, K. (2013). WESPOT: Inquiry based learning meets learning analytics. In Proceeding: The Third International Conference on e-Learning (pp. 15–20). Belgrade Metropolitan University. http://oro.open.ac.uk/42569/
- Stephens-Martinez, K., Hearst, M. A., & Fox, A. (2014). Monitoring MOOCs: Which information sources do instructors value? In M. Sahamani (Ed.), Proceedings of the First ACM Conference on Learning @ Scale Conference (pp. 79–88). ACM. https://doi.org/10.1145/2556325.2566246
- UNESCO. (2007). Curriculum change and competency-based approaches: A worldwide perspective. UNESCO Publications. http://www.ibe.unesco.org/en/services/online-materials/publications/recent-publications/single-view/news/curriculum-change-and-competency-based-approaches-a-worldwide-perspective-prospects-n-142/2842/next/4.html
- Vardi, I. (2012). The impact of iterative writing and feedback on the characteristics of tertiary students’ written texts. Teaching in Higher Education, 17(2), 167–179. https://doi.org/10.1080/13562517.2011.611865
- Verbert, K., Govaerts, S., Duval, E., Santos, J., Van Assche, F., & Parra, G. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18(6), 1499–1514. https://doi.org/10.1007/s00779-013-0751-22
- Wang, D., & Han, H. (2021). Applying learning analytics dashboards based on process‐oriented feedback to improve students’ learning effectiveness. Journal of Computer Assisted Learning, 37(2), 487–499.
- Xhakaj, F., Aleven, V., & McLaren, B. M. (2016). How teachers use data to help students learn: Contextual inquiry for the design of a dashboard. In K. Verbert, M. Sharples, & T. Klobučar (Eds.), Adaptive and adaptable learning (pp. 340–354). Springer. https://doi.org/10.1007/978-3-319-45153-4_26
- Zhao, K., & Chan, C. K. K. (2014). Fostering collective and individual learning through knowledge building. International Journal of Computer-Supported Collaborative Learning, 9(1), 63–95. https://doi.org/10.1007/s11412-013-9188-x