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DYNAMIC HEDGING UNDER 
TRANSACTION COSTS : 
A LITERATURE REVIEW 

by Maher Yaghi

ABSTRACT

This article présents an introduction to dynamic hedging with a description of the 
different methods already used to implement a discrète hedging program. Two very 
distinct approaches hâve been taken in the pursuit of dynamic hedging under transaction 
costs : Local in time and Global in time. In the first approach, the hedge timing strategy 
is fixed exogenously or the risk taken is fixed exogenously. The second approach 
proposes to achieve an element of optimality under the utility maximization approach. 
In the first section of the article, we will discuss the background into dynamic hedging. 
The second section will elaborate on the different methods that hâve been proposed so 
far and in the final section some concluding remarks are discussed.

RÉSUMÉ

Cet article est une introduction aux études de rebalancement dynamique en présentant 
les différentes méthodes déjà élaborées. Deux grandes voies ont été utilisées pour le 
rebalancement avec coûts de transaction : Optimisation locale et Optimisation globale. 
La première approche essaye de fixer le risque ou la période de rebalancement comme 
variable exogène. La deuxième approche propose de trouver un élément d’optimalité 
sous l’hypothèse de la maximisation de la fonction d’utilité sur toute la période de 
rebalancement. L’article est divisé en trois parties : une introduction au sujet du 
rebalancement dynamique, une revue des différentes méthodes élaborées et finalement 
quelques notes de conclusion sont proposées.
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■ INTRODUCTION

466

Options are a part of the wide family of dérivative securities, 
which count the futures, swaps, and forwards, etc. Compared to 
linear products such as futures or forward, options possess some 
spécial characteristics making them very flexible and can be used 
in a variety of ways. Ail we need to price an option is the existence 
of an underlying security and some parameters including risk-free 
rate, volatility, time to expiration, and a payoff function.

The séminal work done by Black & Scholes (B&S) in 1973 
was the beginning of today’s contingent daims analysis. In their 
paper, the authors created a risk-free hedge, which consists of a 
long position in a stock and a short position in an option. They 
go on demonstrating how this portfolio should earn the risk free 
rate thus opening the possibility in pricing stock options without 
the need for the underlying’s growth rate or the discount rate of 
the option.

Option pricing and portfolio hedging are widely used in today’s 
financial market in taking spéculative positions, reducing risk 
exposure, capital budgeting and risk-free arbitrage to name a few. 
Options can exist in many shapes and forms, ranging from the basic 
calls and puts on stocks to the very colourful interest-rate Asian 
options or to real options used in insurance, capital budgeting or 
executive compensations. Much work has been done so far on the 
pricing and the use of these dérivatives. This article will try to sort 
through the work already done in maintaining a risk-free portfolio. 
As mentioned before, maintaining this risk-free hedge is crucial 
because it is the foundation of ail option pricing. Thus this article 
could shed some light on the possible existence of a risk-free hedge 
in a not so perfect world and lead the way to the implémentation 
of a trading program that would be used in portfolio management, 
hedge funds and day trading to name a few.

■ BASIC MODEL OF OPTION PRICING

In the world of options, two domains hâve progressed to 
answer two different questions. The first is what should be hedged; 
this product could be called risk management design. The second 
question would be to answer the question of how to hedge; this is 
the hedging technology. In its construction, hedging technology is
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mathematically dépendent and could take many different complex 
routes thus allowing for different interprétations. The results of 
these routes came to be as opposite as to accept or to réfuté even 
the possibility of is discrète hedging possible ?

Before Black & Scholes (B&S), the Boness (1964) and Sprenkle 
(1964) models depended on the underlying’s growth rate and 
a discount factor for the option. In 1973, the B&S model was 
introduced and removed ail estimâtes that integrate measurement 
and interprétation errors. By constructing a perfect hedge, they 
were able to use Itô’s lemma and produce the partial dérivative 
formula (PDF) followed by the option price:

>2

Or equivalently: 0 + y2 o2S2r + rSA - rV = 0

where V is the option price, S is the underlying’s price, c is 
the underlying’s volatility and r is the risk-free rate. We then find 
the first dérivative to time (“0” thêta), the second dérivative to the 
underlying (‘T” gamma), the first dérivative to the underlying (“A” 
delta). The above équation is a linear parabolic partial dérivative 
équation. Linear meaning that if there are two solutions, their 
sum is also a solution and parabolic meaning that they relate to a 
diffusion process. The notation table is the appendix.

The major assumptions of this dérivation are :

1 ) The underlying follows a lognormal random walk

2) The risk free rate is a known function of time

3) No dividend on the underlying

4) Delta hedging is done continuously

5) No transaction costs on the underlying

6) No arbitrage opportunities.

In this article we will be interested in relaxing the fourth and 
the fifth assumptions. We should point out that the fifth assumption 
relates to the underlying, not the option since the B&S hedge 
consists of a long and varying quantity position in common stock 
and a short position in call option. This hedge will require a net 
investment that will eam the risk-free rate and could be called an 
investment hedge. This is in contrast to a borrowing hedge that 
consists in a long call position and a short stock position providing
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a supply of fund that will cost the risk-free rate. Later, we will 
be relaxing these assumptions to find that in certain situations, if 
transaction costs are very low, arbitrage could conceivably create 
society’s lowest cost financial intermediary : a financial black hole. 
From this point forward, the discussion will be built around an 
investment hedge but the équivalent is also possible.

It also should be pointed out that the delta has a significant 
rôle in a hedge since it gives the quantity needed of the underlying 
to hâve a complété hedge. For plain puts and calls, delta changes 
from 0 to 1 for a call and from -1 to 0 for a put. Geometrically, 
delta can be expressed as the slope of the line drawn tangent to the 
option’s theoretical price curve at the point equal to the underlying 
stock’s value. Individual call options unless very deeply in the 
money or moderately in the money but very near to expiration, 
carry deltas less than one. The problem with deltas is not how to 
calculate them nor how to create them, but rather how to cope with 
their constant change. The gamma is an indication of how stable 
the hedge will be in case of small changes in the underlying. It is 
the sensitivity of delta. The delta of an option is in constant flux 
and gamma gives an indication on the direction of its movement. 
Finally, thêta is the measure of the speed with which a given option 
loses time value.

Now that we covered most of the model’s background, let us 
take a moment to review the steps of portfolio hedging. First, after 
deciding the portfolio of stocks to be hedged, a quantity of options 
on the underlying is shorted to create a risk free hedge. To keep 
the hedge risk-free, the underlying portion should continually be 
rebalanced and the quantity needed is calculated through a measure 
related to the dollar-delta of the option. The return of the portfolio 
is a combination of the return on the underlying and the option 
portions. If these actions were repeated until expiration time, the 
portfolio would earn the risk-free rate with daily returns uncor- 
related with the underlying. The reason for this is that in Ito’s 
lemma dérivation, in continuons time, ail but the first three dériva­
tions are kept and these dérivations do not exhibit any systematic 
risk. This theory allows the portfolio to be priced in a way to hâve 
the risk-free rate of return.

The different proposed techniques hâve as final motive to 
create intervals that give the manager of the hedge the signais that 
he or she needs to keep the hedge in balance. Thus, by controlling 
for transaction costs and out of balance risk, the model will evaluate 
the best course of action. The signal should be clear and précisé 
to automate as much as possible the rehedging process. At each
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point, the model should also give a clear signal on how much the 
hedge is out of balance and the risk in dollars that the manager is 
exposed to.

Relaxing hypothesis number 4: Authors verified that even in 
discrète time, with no transaction costs, the return of an option 
hedge is a function of the square of the change in the underlying 
and for short rebalancing it still exhibited little or no systematic 
risk. The Law of Large Numbers for Martingales states that the sum 
of the changes in the différence between the change in value of the 
portfolio and the call option will tend toward zéro. Thus, the return 
on an individual hedge portfolio is uncorrelated with the return on 
the market, but the return on the hedge is not independent of the 
return on the market. Boy le and Emanuel (1980) put it simply that 
the return is the product of three components:

1) A deterministic function of the underlying evaluated when the 
hedge is constructed

2) A random variable drawn from a chi-squared distribution with 
one degree of freedom with mean of zéro (because of the 
underlying’s leptokurtic return distribution)

3) The time interval between adjustments

This dérivation allowed later on for the construction of reba­
lancing techniques that used intervals of one day to one week 
(Whaley 1982) and even to two months (Leland 1985). These 
experiments showed that under controlled. volatility, the dynamic 
hedge strategy leads to ex-post portfolio retums that approximate 
the ex-ante risk free return’s theoretical value.

Any dérivation should make sure the following possibility is 
accounted for : B&S were able to dérivé their formula on the basis 
that path-independent strategies are option replicating strategies, 
but what if the hedge has the potential for requiring to be fully 
invested. This means that the portfolio is completely composed 
of the underlying. This is a real possibility when we are close to 
maturity and the option is very out of money. In this case, the 
portfolio will exhibit substantial systematic risk. Thus, a dynamic 
hedge strategy that has the potential to be fully invested or fully 
cashed out is path dépendent.

Another potential for error is the whipsaw effect that happens 
when the underlying is close to the strike price; in this région, the 
delta could greatly fluctuate thus any out of balanced portfolio could 
exhibit extreme systematic risks. In this case, a gamma neutral 
strategy could make the différence. Thus, any hedging should
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include a correction for the delta and the gamma, when needed, 
and to protect from extreme movements when the underlying is 
near the strike price. This will minimise movements in the portfolio 
since a gamma and delta neutral position has a greater probability 
of staying in the boundaries of no transaction than a solely delta 
neutral position.

In a first step, we will suppose that the distribution is lognor- 
mal allowing for the use of the usual normal or t-statistic values. 
Nevertheless, in reality, the underlying follows more a leptokurtic 
distribution thus the t-statistic will be biased. For a small sample 
size, the normal t-statistic will be biased downwards, this is derived 
from a closely bunched négative retums and the variance estimate 
tends therefore to be low. This leads to a large négative t-statistic. 
On the other hand, a positive mean retum is caused by a prédo­
minance of positive widely dispersed daily returns making the 
t-statistic appear insignificant because of the resulting high variance 
estimate. We know that the law of large numbers will tend to favour 
the use of the standard t-statistic but trading steps during a certain 
period could be small thus correcting the t-statistic could make the 
différence. This corrected t-statistic will hâve a shortened lower tail 
and we expect it to help to take into account the frequent extrême 
outliers when there are few trading intervals and the option is 
initially at the money.

Relaxing hypothesis number 5 : In theory, since borrowing 
rates are higher than lending rates, the borrowing hedge option will 
be greater than an investment hedge’s option price. In the case of 
transaction costs, in an investment hedge, just raising the option 
price can recapture these costs incurred. For a borrowing hedge, 
transaction, and market impact costs caused by large transactions, 
will push the option’s price lower. If cost spreads are the right sizes, 
the investment and the borrowing hedges will be equal. If the cost 
spread is low relative to the lending and borrowing rate spread, the 
investment hedge option could be lower than a borrowing hedge 
option. Thus if an option can be replicated to be situated between 
these two boundaries, it will yield a lending rate higher than the 
risk free rate or a borrowing rate lower than the market’s borrowing 
rate. This is what was previously referred to as a financial black 
hole. Risk free arbitrage can then be used to generate alpha (extra 
return).

We argue that modelling any discrète hedging without correc­
ting for transaction costs will lead in many cases to accept the 
examined technique but when cornes the time to include these 
costs, the model becomes biased. Much work has been done so far
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on this subject : Boy le & Vorst (1992) and Leland (1985) are good 
examples. As mentioned earlier, option réplication is by construc­
tion a path independent strategy but not when there are transaction 
costs. This is because the final return will dépend on the cost 
incurred that itself dépends on the path taken by the underlying. Let 
us take for example a position on an underlying that is very close 
to the strike price. As mentioned earlier this possibility will resuit 
in a very high whipsaw effect inducing much rebalancing thus high 
rebalancing costs. On the other hand, an option very much in or out 
of the money will require less rebalancing thus lower transaction 
costs.

Any replicating strategy should respect some general guide- 
lines. First, transaction costs should remain bounded and second, 
the return including transaction costs should be uncorrelated with 
the market as much as possible. Let us remember that we need 
two figures, a transaction cost on the option and a second for the 
underlying. In the real world however, rebalancing a hedge position 
will take a very different strategy. Many traders hâve seats on one 
of the option or the stock exchanges thus allowing them lower costs 
on trades. These traders will prefer hedging an option position with 
other options and not stocks to save on the higher costs.

■ LITERATURE REVIEW ON TRANSACTION
COST MODELS

Two very distinct approaches hâve been taken in the pursuit 
of dynamic hedging under transaction costs : Local in time and 
Global in time. In the first approach, the hedge timing strategy is 
fixed exogenously : Leland (1985), Boy le & Vorst (BV) (1992), 
Hoggard, Whalley & Wilmott (HWW) (1994), Avellaneda & Paras 
(AP) (1994), Toft (1996), or the risk taken is fixed exogenously : 
Whalley & Wilmott (WW) (1993) and Henrotte (1993). The second 
approach proposes to achieve an element of optimality under the 
utility maximization approach Hodges & Neuberger (1998), Davis, 
Panas & Zariphopoulou (DPZ) (1993) and Whalley & Wilmott 
(1994, 1997).

In the following section, we will describe the two approaches 
and the different articles pertaining to them and new approaches 
coming in the horizon.
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O Local inTime

472

The Boyle & Emanuel model (1980)

The aim of the paper was to identify the component of the 
return of a discreetly balanced hedge portfolio in the presence of no 
transaction costs and to analyze the distribution of the returns on the 
portfolio. At time t a hedge portfolio is constructed by purchasing 
one call option at price C and selling dC/dS units of stocks short so 
that the initial investment is C - SN(d{). At time t 4- Ar, the value of 
the portfolio is : C + AC - (S + AS) N(d}).

Hence, we obtain an expression for the hedge return in ( 1 ) and 
(2) if 0 is a random variable drawn from a normal distribution with 
zéro mean and unit variance:

WÆ = AC- ASWfJ, ) + rAz Xexp(-rz* ) W(</2 ) + O ( A/2 ) ( 1 )

= [C, + |Cssg2S2(/2 +rXexp(-rr<)A/(J2)]Az + <9^Az^j (2)

Substituting the values of Ct and Css in (2) and neglecting 
higher order of At we obtain

HR = Xy&t (3)

where

HR is négative only if |(|)| < 1. Since (|) is drawn from a unit 
normal distribution, HR will be négative 68% of the time and 
positive in case of large movements of the underlying. We can see 
from (3), that the hedge return other than being uncorrelated with 
the market can be decomposed into three components :
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i. A deterministic function of the underlying evaluated when the 
hedge is constructed given by :

If the number of options held is kept constant, the retum will 
be heteroscedastic. Adjusting the trading interval At inversely 
with X could reduce this phenomenon.

ii. A random variable drawn from normal distribution : (j>2- 1. 
The authors point out the fact that in reality, this stochastic 
variable is more skewed than normal and thus any inference 
on hedge retum should be adjusted to correct for homoscedas- 
ticity.

iii. The time interval between adjustments Ar

This model gave a very intuitive view of the expected retum 
over a hedge but did not tackle transaction costs. However, the 
authors tested many different t-statistics (t-stat) adjustment tech­
niques to assess their significance. They examined the biases that 
can arise from the skewness of the retum distribution in the calcula­
tion of t-stat for confidence interval construction. Assuming À cons­
tant, the estimation bias will exactly correspond to that obtained 
from a chi-squared distribution with one degree of freedom.

• The first approach is to use raw t-stat tables from normal 
distribution. It was found that this method failed to pick up 
fat tail distributions.

Another approach to solving this is by constructing frequency 
tables of the estimated t-stat. These tables could be used for 
confidence construction like regular t-stat. The authors found 
that this approach worked well for in sample numbers but 
failed in out of sample calculations.

The adjusted Johnson (1978) statistic that uses sample mean, 
variance, and skewness.

Adj. t =
(x -g) + (p3 / 6o2A) 4-(p3 /3o4)(x-|i)2 

V(s !/w)

It was not found useful because it does not correct for the 
presence of heteroscedasticity présent in hedge retums.
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• A homoscedastic t-stat : this method did not help since it is not 
distributed like a chi-square.

• A doubly corrected t-stat : It was constructed by a combination 
of Johnson’s statistic and a Homoscedastic one. This last 
measure proved résilient and gave good adjustments to fat tai! 
in case of out, at or in-the-money options.

Thus, Boyle and Emanuel tried to identify the component 
of the return of a discreetly balanced hedge portfolio but did not 
include the transaction cost component.

The Leland model (1985)

This was the first complété article on the introduction of trans­
action costs into the dynamic hedging world. The paper proposes 
an alternative replicating strategy depending upon the level of 
transactions costs and upon the révision interval and the option to 
be replicated. The model leads to note that:

i. Transaction costs remain bounded, as the révision period 
becomes short.

ii. The strategy replicates the option return inclusive of transac­
tion costs, with an error uncorrelated with the market and 
approaches zéro, as the révision period becomes short.

iii. An analytical formula to calculate the expected transaction 
costs, and bounds on option prices.

The model assumes that the underlying follows a logarithmic 
diffusion process. The same portfolio as in the Boyle & Emanuel 
model is constructed and held for the length of A/ (the révision 
interval). In case of no transaction costs but discrète hedging, the 
return on the portfolio A/¥ will be as in Boyle & Emanuel :

The author shows that even with révision periods lasting 8 
weeks, the expected return will be close to zéro. In addition, hal- 
ving the révision period reduces the standard déviation of the hedge 
return by a factor of exactly 1 / a/2 .

In the second dérivation, Leland shows that by introducing 
a proportional transaction cost to the underlying’s price, a closed 
form solution can be obtained by adjusting the volatility in the B&S 
model for a long (short) call.
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Let k represent a round trip cost measured in fraction of the 
volume of transaction:

ô2 (<52,£, W 1 + kE
AS /cPAZ

/ S ! J

Integrating this into the B&S portfolio : AH = AP - AC - TC 
gives the return on the hedge :

f AS'] +k E
AS

l s S
AA
S

Where E(HR) = O^At^j -> 0 and var(HP) = <?(Ar2) both 

uncorrelated with the market. Thus by integrating this new volatility 
into the B&S model, a new pricing is done where the option’s price 
dépends on the level of the transaction cost. This new price (now 
higher) will give an expected return of zéro if used to dynamically 
hedge. The différence between the adjusted option and the B&S 
option (Z) could be seen as an insurance policy guaranteeing cover- 
age of transaction costs, whatever those may actually be.

For small transaction costs, Z=kS()N'[dl)^[t* /-\l2nAt and 
turnover is equal to : Z/kS{}.

Turnover will be greatest when the option is slightly in the 
money. Testing of the model showed that transaction costs stayed 
bounded. Even options with 5 years to maturity and k = 4% gave 
transaction costs of 10% higher than B&S with turnover of 16.01 %.

This model gave a first insight to hedge retums under transac­
tion costs. Testing was done on options with maturity of 3, 6 and 
12 months, moneyness (5/X) running from 0.8 to 1.2, révision times 
every one, fours and eight weeks, and transaction costs of 0, 0.25, 1 
and 4%. Even with the close to zéro percent hedge return, we would 
like to mention that variances on those returns were particularly 
big. For example, hedging a 3 months option with révisions of 
8 weeks periods under 4% transaction costs gave mean return of 
- 4.3% but a volatility of 110.2%. This is in contradiction with the 
initial assumption that the portfolio is risk free. We can see that the 
hedge is risky to a certain point and thus should eam a premium.
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The authors also tested their new model in comparison to B&S 
inclusive and exclusive of transaction costs. The results showed a 
distinct improvement of the hedge return (doser to 0%) but did not 
reduce their volatility.

Leland’s model was the first complété model in the presence 
of transaction cost. However many questions were left without 
answers. As mentioned earlier, this model eluted that discrète 
hedging is feasible; it did not give an optimal answer as to when 
one should hedge.

The Boyle & Vorst model (1992)

This model was constructed using the same assumptions as the 
Leland model but instead of a continuous time modeling, it uses the 
discrete-time binomial lattice framework employed by Cox, Ross, 
and Rubinstein (1979) for the asset price. Introducing a cost of k to 
the model enables to rewrite the up and down movements as:

AS’iï + B(l + r)-A.ST + B, (4)

AS d + B (1 + r) = A2SJ + B2 (5)

where ü = u(l + k) and d=d(\-k') (6)

u and d are a measure in % of an up or down movement :

Using this model, at each time step, one needs to calculate the 
delta and the value of B (the amount of bonds to buy) in order to 
keep the total portfolio risk free.

Equation (4) indicates that the value of the portfolio in the up 
state is exactly enough to buy the appropriate replicating portfolio 
corresponding to this state and to cover the transaction costs incur- 
red in the rebalancing. The model assumes that the replicating 
institution does not hâve to buy the initial amount of risky asset (A). 
The value of the call can thus be derived from (4), (5) and (6) by 
working down the lattice :

(1 + r)
(7)
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This gives rise to an adjusted process that differs from both 
the original asset price and the risk neutral processes. Under this 
new process, the probability of a particular state dépends on whet- 
her the previous jump was upward or downward. After a down- 
jump, the probability of another down-jump is larger than in case 
of a preceding up-jump. We can represent this conditional proba­
bility to be a Markov process with two states:

(8)

The first column of P represents the probability distribution of 
X.+l if X. = loge u and the second column represents the probability 
distribution if X.- loge d. This new process computes the value of a 
long (short) caÛ as equal to the B&S value but with a modified 
variance given by:

2k4n

where n is the number of steps until the maturity of the option at T.

This is very close to Leland’s valuation of the volatility in 
continuons time:

Since ^(2/ 7u) ~0.8 the Boyle and Vorst model will lead to 
higher (lower) prices for long (short) calls.

The model thus shows that the long call price can be expres- 
sed as a discounted expectation under a new Markov process but 
assumes that the frequency of transaction is specified exogenously.

Tests were done empirically in comparison to B&S and the 
Leland model. Testing was done on options with maturity of one 
year, moneyness (S/X) running from 0.8 to 1.2, révision times of 6, 
13, 52 and 250 times and transaction costs of 0, 0.125, 0.5 and 2%.

The Boyle and Vorst model showed as expected higher long 
call prices and lower short call prices. Because of this spread 
between buyers and sellers, market makers should neutralize their 
positions by entering into offsetting position or charge a higher 
volatility for selling calls and lower volatility for buying them.
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The Boyle and Vorst model was the first complété model in 
the presence of transaction cost to be implemented using a bino­
mial tree. The model is the discrète équivalent to Leland’s model 
and gave also very similar solutions. Still, this model did not give 
an optimal answer as to when one should hedge.

The Hoggard, Whalley & Wilmott model (1994)

This model was derived in discrète time to incorporate in the 
partial differential équation a cost of transaction term. The assump- 
tions are thus the same as in the original B&S except for the fourth 
and fifth constraints. After a timestep the change in the value of the 
hcdged portfolio is now given by :

sn =

+ |o2S2|^(j)2+nS^ + ^-|jA5 &-kS|v|. 
. Où O t O t i

The same as B&S but with the subtraction of the transaction 
cost. Dynamically hedging the portfolio and choosing A - 
and v equal to the number of shares to transact will yield a riskless 
portfolio that should earn the same return as the risk-free return r 
leading to the new PDF :

9V
9/

92V
as2

+ rS------rV = 0.
9S

This équation is a nonlinear parabolic partial differential équa­
tion in comparison to B&S’s linear PDF. This is very important 
because in the presence of transaction costs, the value of a portfolio 
is not the same as the sum of the values of the individual compo- 
nents.

Knowing that T for a plain vanilla option is always > 0, 
integrating the second and the third terms in the previous équation 
gives a modified variance equal to : 

ô2 = G2 ±2ko (The same as the Leland équation).
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This équation implies that a long position with costs incorpo- 
rated has an apparent volatility that is less than the actual volatility. 
When the underlying rises, the owner must sell some quantity of the 
underlying but because of the bid-ask spread, the price at which it is 
sold will be lower. The converse is also true for a short position.

The model could be also adjusted for more complex transac­
tion structures :

If trading in shares costs k} + k2v + k3vS9 where k{ k2 and k3 are 
a fixed portion, proportional to volume and proportional to value 
traded respectively, the new PDF is :

a S "F ^3*^) d2V
as2

The HWW model was the first model to give a B&S partial 
dérivative solution to value the option including transaction costs. 
Also, it was the first model to include fixed cost structure in 
determining optimal hedging. However, the decision as to when to 
hedge was left arbitrarily to the user.

The Whalley & Wilmott (1993), and Henrotte models (1993)

Ail the previous models were local in time where the exoge- 
nous trading rule was the time of rebalancing. In the two models 
of this section, the exogenous rule is the risk taken and the timing 
is flexible.

In these models, the strategy revolves around a bandwidth 
that runs around the delta of the hedge. If the bandwidth is breach, 
complété rehedging has to take place. The authors modeled the risk 
of not being completely hedged after a time step by the following 
formula:

dt ,

where D is the actual delta of the position.

If we define H0 as the maximum tolerable risk for the portfolio 
then :
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We can see in the above équation that the left term is the 
équivalent of the dollar value of the risk of not being completely 
hedged. The right hand term is the input value that the user has as 
the maximum tolerable dollar risk that he or she can take during 
the hedging program. The value is arbitrary and dépends on the risk 
aversion of the user. Thus, rebalancing the portfolio should follow 
if the bandwidth is breached and the rebalancing should lead to :

If trading in shares costs kx + k2v + k^vS, where k} k2 and ky are 
a fixed portion, proportional to volume and proportional to value 
traded respectively, the new PDF is :

o?54r2

H»

( HyA
\ 7

This model was the extension of the previous HWW model 
but for the first time, the optimal rehedging decision was based on 
the output and not arbitrary. This was the first model that actually 
would tell you when to rehedge the position while taking into 
considération the user’s risk characteristics. One weak point is the 
myopie effect that the model has. The decision is made at time t 
without measuring the effect of the decision on the final wealth at 
the end of the hedging program.

L I Global in Time

The Hodges, Neuberger (1989) and Davis, Panas & 
Zariphopoulou models (1993)

As mentioned earlier, the global in time strategy tries to find 
an optimum without exogenous entries. Ground braking work was 
first proposed on this subject by HN and later improved by DPZ. 
The whole idea is to remove any necessary constraints from the 
dérivation as to find a more reliable tool for hedging. HN assume 
that a financial agent holds a portfolio that is already optimal in
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some sense but then has the opportunity to issue an option and 
hedge the risk using the underlying. Because of the rehedging 
costs, the agent must maximize his expected utility in term of a 
loss function. Under the HN model, the utility function follows an 
exponential form having a constant risk aversion and with purpose 
of valuing an option on its own. The DPZ model improved the 
solution by including a portfolio effect and constraints on expiry 
of the option and the obligation due to the option contract. They 
also assumed that transaction costs are proportional to the value of 
the transaction (kvS). From these assessments, in both the HN and 
DPZ provide hedging strategies in term of the solution of a three- 
dimensional free boundary problem (explained later). The variables 
are S, t, and D. Figure 1 depicts the delta bandwidth prescribed by 
the utility maximizing model.

A description of the model:

Given an initial cash wealth of B (t), the investor can invest wo' z’
in a portfolio of the risky share and riskless bond in an effort to

maximize utility. Thus the final wealth expected utility could be 
written by:
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r(t, S, Bw, ^ = O) = max>w(x,^7.{E|t/(^(7'))|}-

Where the final wealth is the wealth in cash after transaction 
costs

w;(T)=^(s(r)s+^(r)-^(5,^(s,7"))+vr(s)-
If we consider now the same investor looking into entering 

an option position.

The amount the investor is willing to pay to enter the market 
when they do not hâve the option position equals the amount they 
are willing to pay to enter the market when they hâve an option 
position plus the value of the option position to them or :

B =B 4-V • wo w

For a general utility function U(x) and for a proportional 
transaction cost, k(S, y) = £35|y|, the optimal solution solves :

max {jy -S(l 4-£3)j^ , (9)

(10)

2ç2
Jr 4- rBJ B 4- |lS</5 4- J ss } — 0, (H)

where dB — rBdt — Sdy — k(S, dy) •

The (S,y) space divides up into three régions, within each 
of which one of the terms (9), (10) and (11) equals zéro. If (9) 
equals zéro, one would buy the underlying; if (10) equals zéro, 
one would sell the underlying; if (11) equals zéro, one does not 
hâve to transact.

In their dérivation, HN and DPZ used the négative exponential 
utility function. This function is easy to use since it has a constant 
absolute risk aversion: -U"! U' = y.

U(x) = 1 - exp(-yx).

Choosing this utility function produces independence between 
the monetary amount invested in the risky asset and total wealth 
and thus the dependence on B could be eliminated. Thus to find the 
solution to the problem one has to solve a three-dimensional free 
boundary problem.
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The major disadvantage to this solution is the computation that 
takes very long time and thus could poorly respond to a volatile 
market.

The solution to this utility maximization dépends on the tran­
saction cost structure :

If transaction costs are proportional to the value traded, reba- 
lancing occurs if the mishedging hits the hedging bandwidth. The 
quantity to rebalance is enough to bring the misalignment to the 
bandwidth.

In case of fixed and proportional costs, upon breaching the 
bandwidth, rebalancing is ordered to an optimal rebalancing point 
between the bandwidth and the B&S hedge.

We can see the contrast to Figure 1. In Figure 2, the rebalan­
cing does not need to be done to achieve delta neutrality. Depen-

ding on the value of the fixed cost and the variable cost, the model 
will give a signal as to by which amount to hedge. It could give a 
signal to completely neutralize the delta bet or to hedge a portion 
of that risk.

The Whalley & Wilmott models (1994,1997)
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As a continuation to the HN and DPZ models, the WW models 
try to get faster computation of the results through asymptotic 
analysis of the three-dimensional free boundary problem. Using the 
same négative exponential utility function as a mean to alleviate 
the dependence on B, they derived a simple formula. In term of 
wealth, the utility function could be written as to maximise the final 
wealth where : , .

< ) )

Giving the System of équation to minimize, in the same way as 
the original HN and DPZ’s three régions. The System of équations 
for J, (9), (10) and (11) transform into :

/

x

If transaction costs are small, WW introduced a parameter 
called e as a measure of the size of the transaction costs. At each 
rehedge there will be an associated cost K that is O(e). Then the 
authors take an asymptotic expansion of the W function in powers 
of £. This technique is used to simplify the calculation of the 
optimal hedge making the problem faster to optimise. To keep the 
text light, we will not put the different steps of the modification 
only the final solution :

2+r+p p+2x
68(r,T)'' >

An intuitive way to see this is that after solving for Y+ and f+, 
the final value of the option if function of the underlying, time and 
the option’s gamma which is used in the calculation of Y+ and Y+.

This procedure could be used to find the value of the option 
under different cost structures by changing the above équation. WW 
give the numerical procedure to evaluate the value under fixed, 
variable and fixed plus variable structures.
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We hâve to point out the fact that the asymptotic évaluation 
could only be done for small transaction costs. It would be interes- 
ting to see the final resuit for different utility functions.

□ New approaches

The Gilster model (1997)

Using options to hedge a portfolio of stocks is in theory a good 
idea but in practice, the options are very unstable and thus hedging 
with option is inherently a very complex problem. B&S recognized 
this and demonstrated using the Taylor sériés that the hedge retum, 
after eliminating powers in higher order of two, produces retums 
that are a function of the square of the change in the underlying 
stock. Thus for short rebalancing intervals, the price changes are 
uncorrelated with the market. In his model, Gilster argues that 
comparing the hedge to a perfect position (when the hedge was last 
rebalanced) undervalue the risk of the hedge and allowing for 
long periods without rebalancing. Why? Just after rebalancing, 
because of the unstable nature of the option, the portfolio will 
become unbalanced. Thus the instantaneous risk is equal to the risk 
of the new perfectly hedge if you would rebalance plus the risk 
of the unhedged stock you continue to hold because you did not 
rebalance. We can see this unbalanced portfolio as a combination of 
a perfectly hedged portion and another that is completely unhedged. 
Let us consider an option hedge in the form of long stock and short 
option:

The initial position is equal to

H=Vs{S,t}S-V{S,t}

After a timestep, the hedge is equal to

H = Vs{S,r}[5, + AS]-V{S + AS,,/ + Az}

The dollar value needed to rebalance is

[ Vs {5 + AS, t + A/} - Vs{S, /}][S + AS]

If the portfolio is not rebalanced then H = P + U

where P = Vs {S + AS, t + Ar} [S + AS] - V{S + AS, t + Ar}

and U = -[ Vs {S + AS, t + Az} - Vs {S, r}] [S + AS].
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Thus the instantaneous risk or standard déviation of the posi-
\ü\tion îs : o,, ~ de — ," s H

Q O Uand the instantaneous beta is : p/7 = ps —.Il
We can see that the unhedged portion is as risky as the under- 

lying. The author shows that volatility could be very high for 
medium rebalancing times and the hedge is not risk-free as B&S 
and other articles showed. We saw this phenomenon in the Leland 
calculation where the hedge retum was close to zéro but its volati­
lity was really high. This démonstration shows that we hâve to 
model the risk of the hedge in a way to pickup intertemporal risk 
and not assume that this risk is uncorrelated with the market. This 
phenomenon is even more important in option spreads where ones 
try to hedge an option with another option.

Gilster’s tests were done on out, in, and at-the-money calls 
with small changes upward in the underlying and options with 3 
and 6 months expiration. In cases of stock option hedges, standard 
déviations reached 42% of the underlying and 93% in case of 
option spreads. Very much higher than what is supposed to be a 
riskless portfolio.

■ CONCLUDING REMARKS

It is widely known that while ignoring time value retum, any 
price movement in either direction causes the hedge to lose money. 
If the hedge is rebalanced continuously, the loses stemming from 

will be offset on average by gains on time value.

This is only possible for short rebalancing times otherwise the 
losses from gamma will overwhelm the modest gains from thêta. 
In our view, this hedge resembles a short straddle (short one put 
and a call with the same strike price). This is the same as having 
large positive beta when the market déclinés and large négative beta 
when the market rises. To stay afloat or make modest gains, only 
very small movements in the underlying are permissible otherwise, 
big loses could be incurred. Viewed this way, the hedge is far from 
being the riskless portfolio described by B&S. We acknowledge this 
phenomenon and we will take it into account in the construction
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of the optimal rehedging pattern so as to keep the portfolio’s risk 
as low as possible.

Even thought many researchers hâve witnessed the existence 
of discrète hedging over long periods, some questions are still 
unresolved. The B&S model has some big gaps when applied 
discreetly. By construction, the model éliminâtes higher orders that 
do contain systematic risk. We also think that existing hedging 
techniques in the literature are not applicable in reality. They 
measure the risk from a perfect position at t equal zéro concluding 
wrongly the non-existence of corrélation.

Economie and financial markets are driven by many factors 
including investor psychology. The market’s psychology is very 
hard to understand and do twist the expected pricing. To fully 
appreciate this let us go back to pre 1987. At that time, it was true 
that not ail strike prices for a given underlying implied the same 
level of volatility as determined from a standard B&S model. There 
was a tendency for out-of-the-money options to trade at higher 
implied volatilities than the at or near-the-money variety. This 
“smile” effect was noted in the literature and was explained in 
a variety of ways. Some argued that the real distribution is not 
lognormal; others said that it follows what economist name, the 
lottery effect. Then came the crash.

ü Enter the skew

In one day, the smile disappeared to open the door for today’s 
skew. There was now a consistently observable tilting of the tradi- 
tional smile. The skew has the effect of giving higher implied 
volatility to options whose strikes were below the current market 
fair value. Why did this happen is empirically unknown but we bet 
that some investors were so badly hurt, being naked with out-of- 
the-money options that they put now a higher premium for security. 
We buy life insurance even thought we know that on average it is 
a loosing bet. We would rather pay a premium to receive that sum 
of money if we were unfortunate to meet the Grim Reaper. It is 
the same for options and the previously mentioned fat tail. We pay 
a premium for those who will bear the risk of another meltdown. 
Maybe this premium is overdone, but it exists and we hâve to work 
with it.

Finally, if discrète risk-free hedging is not possible, meaning 
that portfolio hedging could not eliminate ail or much of the 
systematic risk, we propose to go back to older models as Boness 
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(1964) and Sprenkle (1964) ho used a stock’s growth rate to price 
the options. Maybe the B&S model does contain too many unfor- 
giving parameters hindering its generalized use.

488

■ APPENDIX: NOTATION USED INTHE
LITERATURE REVIEW

t - Current calendar time

T = Expiration time

f = Time to expiration date or T - t

C = Price of a European call option at time t based on B&S

C = Price of a European call option at time t based on a new
specified model

V = Price of a European option a time t

n = v(s, t)~ ss

PDF = Partial Dérivative Formula

r - Riskless interest rate continuously compounded

p = Expected return

5 = Stock price at time t

X = Exercise price of the option

Ar = Rebalancing period

S + AS = Stock price at time t + St

C + AC = Call price at time t + St

o2 = Variance rate of return or implied variance

df = [log(5/X) + (r + io2)T]/G7f

d2 - dt- vJT

V(-) = The cumulative normal distribution function

' d»-

Z(-) = The unit normal density function
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0 = The first dérivative of V to time

A = The first dérivative of V to the underlying

T = The second dérivative of V to the underlying

(|) = A value drawn from a standardized Normal distribution

HR = The hedge retum

Cx, Vx = Partial dérivative of the call value and option value 
with respect to x

fi3 = Skewness of the distribution

E[x] = The expected value of x

k = A round trip transaction cost

B = The value invested in bonds

= The maximized expected utility of final wealth without 
the option

Jx and Wx = Partial dérivative of utility and wealth respectively to x 

y (S, t) = The quantity of shares to be held in the portfolio

T = Any time between t and T

Y = y is a measure of risk aversion of an investor

8 (7,7’) = e r{T'{\ is a discount factor which convert wealth at
maturity to current

Y = The différence between the actual and idéal number of
shares to hold
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