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Abstract

Linear Complementarity Problems (LCPs) belong to the classof NP-complete problems. Therefore we can not expect
a polynomial time solution method for LCPs without requiring some special property of the coefficient matrix. Following
our recently published ideas we generalize affine scaling and predictor-corrector interior point algorithms to solve LCPs
with general matrices in EP-sense, namely, our generalizedinterior point algorithms either solve the problems with
rational coefficient matrix in polynomial time or give a polynomial size certificate that our matrix does not belong to
the set ofP∗(κ̃) matrices, with arbitrary large, but apriori fixed, rational, positiveκ̃.
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1. Introduction

Consider the Linear Complementarity Problem
(LCP): find vectorsx, s ∈ Rn that satisfy

−Mx + s = q, x s = 0, x, s≥ 0, (1)

whereM ∈ Rn×n andq ∈ Rn, and the notationxs is
used for the coordinatewise (Hadamard) product of the
vectorsx ands.

LCPs belong to the class ofNP hard problems, since
the feasibility problem of linear equations with binary
variables can be described as an LCP [14]. Therefore
we can not expect an efficient (polynomial time) solu-
tion method for LCPs without requiring some special
property of the matrixM .

⋆ The research of Tibor Illés and Marianna Nagy has been
supported by the Hungarian National Research Fund OTKA
No. T049789. The work of T. Terlaky has been supported by
a grant from Lehigh University.
Email: Tibor Illés [tibor.illes@strath.ac.uk], Marianna Nagy
[nmariann@cs.elte.hu], Tamás Terlaky [terlaky@lehigh.edu].

In [9] we modified long-step path-followingInterior
Point Methods(IPMs) for LCPs with a general coeffi-
cient matrixM . The modified algorithm either solves
the LCP, or gives a certificate that the matrix of the
problem is notP∗(κ̃) (with apriori given but arbitrary
large κ̃), or gives a certificate that the LCP has no so-
lution. Algorithms that do not require any special prop-
erty of the MatrixM are needed becasue it cannot be
verified in polynomial time if matrixM belongs to the
class of matrices that allow polynomial time solvability
of the LCP. Indeed, Tseng [21], proved that the problem
deciding whether a square matrix with rational entries
is a column sufficient matrix is co-NP-complete, sug-
gesting that it can not be decided in polynomial time
whether there is a finite nonnegativeκ with which ma-
trix M is P∗(κ). In this paper we show, that the idea
behind the modification of long-step path-following al-
gorithm is general, i.e., it can be adapted to other IPMs
as well. Thus here we present the modifications of two
well known IPMs: the affine scaling and predictor cor-
rector algorithms.

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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In [9] first we discussed the generalization of the em-
bedding technique of Kojima et al. [14]. The embedding
technique is one of the options to ensure the availability
of an initial interior point. This technique is indepen-
dent of the particular IPM, therefore we do not repeat it
in this paper. Thus we may assume without loss of gen-
erality that an initial interior feasible solution is known.

The rest of the paper is organized as follows. The
next section deals with the fundamental properties of
P∗(κ)-matrices and some well-known results are pre-
sented. In Section 3 we summarize the results of paper
[9]. Section 4 deals with the modification of two well
known interior point algorithms: the affine scaling and
predictor-corrector algorithms.

For ease of understanding and for self containedness
the main results of the papers [11,18] are summarized
in the Appendix.

Notation:
We use the following notations throughout the paper.
Scalars and indices are denoted by lowercase Latin let-
ters, vectors by lowercase boldface Latin letters, matri-
ces by capital Latin letters, and finally sets by capital
calligraphic letters. LetRn

⊕ (Rn
+) denote the nonnegative

(positive) orthant ofRn. Further,I denotes the identity
matrix of appropriate dimension, andX is the diagonal
matrix whose diagonal elements are the coordinates of
the vectorx, soX = diag(x). The vectorx s = Xs is
the componentwise product (Hadamard product) of the
vectorsx ands, and forα ∈ R the vectorxα denotes
the vector whoseith component isxα

i . The largest and
smallest coordinate of a vector is denoted bymax(x)
andmin(x), respectively. We denote the vector of ones
by e. Furthermore, for a vectorx and a matrixM we
define the setsI+(x) = {1 ≤ i ≤ n : xi(Mx)i > 0}
andI−(x) = {1 ≤ i ≤ n : xi(Mx)i < 0}, which
are used in the definition ofP∗(κ) matrices. Finally,
F0 :=

{

(x, s) ∈ R2n
+ : −Mx + s = q

}

denotes the set
of strictly feasible solutions of the LCP.

2. Matrix classes and the Newton step

The class ofP∗(κ)-matrices were introduced by Ko-
jima et al. [14], and it can be considered as a general-
ization of the class of positive semidefinite matrices.
Definition 1 Let κ ≥ 0 be a nonnegative number. A
matrix M ∈ Rn×n is aP∗(κ)-matrix if for all x ∈ Rn

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I
−

(x)

xi(Mx)i ≥ 0.(2)

The nonnegative real numberκ denotes the weight
that need to be used at the positive terms so that the
weighted ’scalar product’ is nonnegative for each vector
x ∈ Rn. Therefore, naturallyP∗(0) is the class of pos-
itive semidefinite matrices (setting aside the symmetry
of the matrixM ).
Definition 2 A matrix M ∈ Rn×n is called a P∗-
matrix if it is a P∗(κ)-matrix for someκ ≥ 0, i.e.

P∗ =
⋃

κ≥0

P∗(κ).

The class of sufficient matrices was introduced by
Cottle, Pang and Venkateswaran [3].
Definition 3 A matrix M ∈ Rn×n is a column suffi-
cient matrixif for all x ∈ Rn

X(Mx) ≤ 0 implies X(Mx) = 0,

and row sufficient if MT is column sufficient. Matrix
M is sufficientif it is both row and column sufficient.

Kojima et al. [14] proved that anyP∗-matrix is col-
umn sufficient and Guu and Cottle [7] proved that it is
row sufficient, too. Therefore, eachP∗-matrix is suffi-
cient. Väliaho proved the other direction of inclusion
[22], thus the class ofP∗-matrices coincides with the
class of sufficient matrices.

Definition 4 A matrixM ∈ Rn×n is aP0-matrix, if all
of its principal minors are nonnegative.

For further use we recall some results aboutP∗(κ)-
andP0-matrices. The reader may consult the book of
Kojima et al. [14, Lemma 4.1 p. 35] for the proof of the
following proposition.
Proposition 5 A matrix M ∈ Rn×n is a P0-matrix if
and only if

M ′ =

[

−M I
S X

]

is a nonsingular matrix

for any positive diagonal matricesX, S ∈ Rn×n. 2

Proposition 5 enables us to check in strongly poly-
nomial time whether matrixM is P0 or not. The next
statement is used to guarantee the existence and unique-
ness of Newton directions that are the solution of sys-
tem (3) for various values of vectora ∈ Rn, wherea

depends on the particular IPM.
Corollary 6 Let M ∈ Rn×n be aP0-matrix, (x, s) ∈
F0. Then, for alla ∈ Rn the system

−M∆x + ∆s = 0

s∆x + x∆s = a
(3)

has a unique solution(∆x,∆s). 2
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The following estimations for the Newton direction
are used in the complexity analysis of IPMs. The next
lemmas are proved by Potra in [17].
Lemma 7 Let(x, s) ∈ F0 andM be an arbitraryn×n
real matrix and(∆x, ∆s) be a solution of system (3).
Then

∑

i∈I+

∆xi∆si ≤
1

4

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

.

Lemma 8 Let the matrixM be aP∗(κ)-matrix,x, s ∈
F0, anda ∈ Rn. Let(∆x, ∆s) be the solution of system
(3). Then

‖∆x∆s‖∞ ≤
(

1

4
+ κ

)∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

,

‖∆x∆s‖1 ≤
(

1

2
+ κ

)∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

,

‖∆x∆s‖2 ≤
√

(

1

4
+ κ

)(

1

2
+ κ

)∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

.

The first statement’s proof in the previous lemma is
similar to the proof of Lemma 5.1 by Illés, Roos and
Terlaky [11]. The second estimation follows from the
Lemma 7 by using some properties ofP∗(κ)-matrices,
and the last estimation is a corollary of the first and
second statements using some properties of norms.

Let the current point be(x, s) ∈ F0 and(∆x, ∆s) be
the corresponding Newton direction. The new point with
step lengthθ is given by(x(θ), s(θ)) = (x + θ∆x, s +
θ∆s). We use the following notations for scaling

v =

√

xs

µ
, g =

∆x∆s

µ
, (4)

where in the affine scaling algorithm for the purpose
of scaling we haveµ ≡ 1, otherwiseµ > 0. In affine
scaling algorithms we use theδa centrality measure

δa(xs) =
max

(√
xs
)

min
(√

xs
) .

In the predictor-corrector algorithm the so-called nega-
tive infinity neighborhoodD(γ), defined by Potra and
Liu in [18], is used. The negative infinity neighborhood
for γ ∈ (0, 1) is defined as

D(γ) :=

{

(x, s) ∈ F0 : x s ≥ γ
xT s

n

}

,

whereF0 :=
{

(x, s) ∈ R2n
+ : −Mx + s = q

}

denotes
the set of strictly feasible solutions of the LCP. The
D(γ) neighborhood is considered to be a “wide neigh-
borhood”.

3. Previous results

In this section we restate those results of paper [9],
that we use in the rest of this paper.

The inequality in the definition ofP∗(κ)-matrices
gives the following lower bound onκ for any vector
x ∈ Rn:

κ ≥ κ(x) = −1

4

xT Mx
∑

i∈I+
xi(Mx)i

.

The following two lemmas are immediate conse-
quences of the definition ofP∗(κ) andP∗-matrices.
Lemma 9 Let M be a realn×n matrix andκ̃ > 0 be
a given parameter. If there exists a vectorx ∈ Rn such
that κ(x) > κ̃, then the matrixM is notP∗(κ̃) andx

is a certificate for this fact.
Lemma 10 Let M be a real n × n matrix. If there
exists a vectorx ∈ Rn such thatI+(x) = {i ∈ I :
xi(Mx)i > 0} = ∅, then the matrixM is notP∗ and
x is a certificate for this fact.

Our modified interior point algorithms are based on
the assumption that the problem data is rational, and
we are interested either to provide a polynomial size
solution to the problem, or to provide a certificate that
our matrixM is not aP∗(κ̄)-matrix for someκ̄ > 0.
During all iterations of our algorithm we have an actual
estimate forκ, sayκ̄. At the beginning of our algorithms,
we assume that̄κ = 0. In every iteration at different
stages of the algorithm we are checking whether our
assumption related toκ is violated. If we detect, that the
matrixM is notP∗(κ̄) with actualκ̄, then the value of̄κ
will be increased. Its new value will be the lower bound
defined by the actual Newton direction∆x. In IPMs the
P∗(κ) property need to hold only for the actual Newton
direction∆x in various ways, for example this property
ensures that with a certain step size the new iterate
is in an appropriate neighborhood of the central path
and/or the complementarity gap is sufficiently reduced.
Consequently, if the desired results do not hold with
the current̄κ value, we updatēκ by increasing it to the
lower bound determined by the Newton direction∆x,
i.e.,

κ̄ = κ(∆x) =:
−∆xT ∆s

4
∑

i∈I+
∆xi∆si

(∆s = M∆x). (5)

The following lemma is our main tool to verify when
matrix M fails to satisfy theP∗(κ) property. Further-
more, the concerned vector∆x is a certificate, whose
encoding size is polynomial when it is computed as the
solution of the Newton system (3) from rational data.
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We use this lemma during the analysis. The first state-
ment is simply the negation of the definition. We point
out in Lemma 12 that if Lemma 4.3 of [12] does not
hold, then the second statement is realized. We show in
Lemma 15 and Lemma 16 that if Theorem 3.3 of [18]
does not hold then the second, the third or the fourth
statement is realized.
Lemma 11 Let M be a real n × n matrix, κ ≥ 0
be a given parameter, and(x, s) ∈ F0. If any of the
following statements holds then the matrixM is not a
P∗(κ)-matrix.
(1) There exists a vectory ∈ Rn such that

(1 + 4κ)
∑

i∈I+(y)

yiwi +
∑

i∈I
−

(y)

yiwi < 0,

wherew = My and I+(y) = {i ∈ I : yiwi >
0}, I−(y) = {i ∈ I : yiwi < 0}.

(2) There exists a solution(∆x, ∆s) of system (3) such
that

‖∆x∆s‖∞ >
1 + 4κ

4

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

.

(3) There exists a solution(∆x, ∆s) of system (3) such
that

max





∑

i∈I+

∆xi∆si, −
∑

i∈I
−

∆xi∆si



 >

1 + 4κ

4

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

.

(4) There exists a solution(∆x, ∆s) of system (3) such
that

∆xT ∆s < −κ

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

.

4. Interior point algorithms in EP form

Hereafter we modify the following two popular fam-
ilies of IPMs:
• A family of affine scaling algorithms [11]:

The Newton direction is the solution of system (3)

with µ = 1 anda = −v2r+2

‖v2r‖ , wherer ≥ 0 is the

degree of the algorithm.

The choice ofa implies

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

=

∥

∥v2r+1
∥

∥

2

‖v2r‖2 .

• Predictor-corrector algorithms [18]:
The predictor Newton direction is the solution of sys-
tem (3) witha = −xs (the affine scaling direction
with r = 0).

The choice ofa implies

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

= xT s;

The corrector (centering) Newton direction is the
solution of system (3) witha = µe − xs, where

µ =
xT s

n
.

The choice ofa implies

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

= µ

∥

∥

∥

∥

√

xs

µ
−
√

µ

xs

∥

∥

∥

∥

2

.

4.1. Affine scaling IPMs

First we deal with affine scaling IPMs. We modify
the family of algorithms proposed in [11], where the
particular algorithms correspond to the degreer ≥ 0 of
the algorithm, wherer = 0 gives the classical primal-
dual affine scaling algorithm, whiler = 1 gives the
primal-dual Dikin affine scaling algorithm [1]. Further,
there is a step length parameterν, that depends on the
degreer (defined among the inputs of the algorithm),
andµ ≡ 1 in scaling (4).

We check not only the solvability and uniqueness of
the Newton system, but also the decrease of the comple-
mentarity gap after a step. For the actual value ofκ we
determineθ∗a(κ), which is a theoretical lower bound for
the maximal feasible step length in the specified neigh-
borhood if the matrixM satisfies theP∗(κ) property.
Therefore, if after a step the decrease of the comple-
mentarity gap is not large enough, it means, that the
matrix M is notP∗(κ) with the actual value ofκ, so
we updateκ or exit the algorithm with a proper certifi-
cate. If the new value ofκ can not be defined by (5),
then the matrixM is notP∗, so we stop and the New-
ton direction∆x is a certificate. If the new value ofκ
is larger thañκ, then the matrix is notP∗(κ̃), therefore
the algorithm stops as well and∆x is a certificate. In
the rest of this subsection we consider the caser > 0.
The modified algorithm is presented in Algorithm 1.

Illés et al. proved [11], that if the matrixM is a
P∗(κ)-matrix, then the step lengthθ∗a(κ) is feasible,
with that step size the new iterate stays within the
specified neighborhood and it provides the required
decrease of the complementarity gap. The following
lemma shows, if the decrease of the complementarity



Tibor Illés et al. – Algorithmic Operations Research Vol.5(2010) 1–12 5

Algorithm 1 - Affine scaling algorithm

Input:
an upper bound̃κ > 0 on the value ofκ;
an accuracy parameterε > 0;
a centrality parameterτ ;
the degree of scalingr > 0;
a strictly feasible initial point(x0, s0) ∈ F0 such thatδa(x0 s0) ≤ τ ;

ν :=

{

2/
√

n, if 0 < r ≤ 1
2τ 2−2r/

√
n, if 1 ≤ r;

θ∗a(κ) := min

{

2

(1 + 4κ)τ

(

√

1 + 4κ +
1

τ 2 n
− 1

τ
√

n

)

,

√
n

(r + 1)τ 2r
,

4(τ 2r − 1)

(1 + 4κ)(1 + τ 2)τ 2r
√

n
, ν

}

.

begin
x := x0, s := s0, κ := 0;
while xT s ≥ ε do

calculate the Newton direction(∆x, ∆s) with a = −v2r+2/‖v2r‖;
if (the Newton direction does not exist or it is not unique)then

return the matrix is notP0; % see Corollary 6

θ̄ = argmin
{

x(θ)Ts(θ) : δa (x(θ), s(θ)) ≤ τ, (x(θ), s(θ)) ≥ 0
}

;

if
(

x(θ̄)T s(θ̄) > (1 − 0.25 ν θ∗a(κ))xT s
)

then
calculateκ(∆x); % see (5)
if (κ(∆x) is not defined)then

return the matrix is notP∗; % see Lemma 10
if (κ(∆x) > κ̃) then

return the matrix is notP∗(κ̃); % see Lemma 9
κ = κ(∆x);
updateθ∗a(κ); % it depends onκ

x = x(θ̄), s = s(θ̄);
end

end.

gap is not sufficient, then the matrixM does not belong
to the class ofP∗(κ)-matrices.

Lemma 12 If x(θ̄)T s(θ̄) > (1 − 0.25 ν θ∗a(κ))xT s,
that is, the decrease of the complementarity gap within
theδa ≤ τ neighborhood is not sufficient, then the ma-
trix M of the LCP is notP∗(κ) with the actual value
of κ. The Newton direction∆x serves as a certificate.

Proof: Based on [12, Lem 4.3] (see Lemma 20 in
the Appendix) the complementarity gap atθ∗a(κ) is
smaller than(1 − 0.25 ν θ∗a(κ))xT s, furthermore by
Theorem 21, ifM is a P∗(κ)-matrix, then the point
(x∗, s∗) = (x(θ∗a(κ)), s(θ∗a(κ))) is feasible. Therefore,
if x(θ̄)T s(θ̄) > (1 − 0.25 ν θ∗a(κ))xT s, then because
the step lengthθ∗a(κ) is not considered in definition of
θ̄ (see the affine scaling algorithm), so either(x∗, s∗) is
not feasible, or this point is not in theτ neighborhood
of the central path, namelyδa(x∗s∗) > τ . We show

that both cases imply, that the matrixM is notP∗(κ)
with the actualκ value.

Let us denote the first three terms in the definition
of θ∗a(κ) by θ1, θ2, andθ3, respectively. We follow the
proof of Theorem 6.1 in [11] (see Theorem 21 in the
Appendix). We need to reconsider only the expressions
depending onκ. There exist positive constantsα and
β such thatβ

α
= τ2 andαe ≤ v2 ≤ βe. The function

ϕ(t) = t − θ tr+1

‖v2r‖ remains monotonically increasing

on the interval[0, β] if θ ≤ θ2 ≤ ‖v2r‖
(r+1)βr . Additionally,

inequalities (17) in [11] hold forθ ≤ θ2, thus forθ∗a(κ)
too:

min(v∗2) ≥ α − θ∗a(κ)
αr+1

‖v2r‖ − (θ∗a(κ))2‖g‖∞, (6)

max(v∗2) ≤ β − θ∗a(κ)
βr+1

‖v2r‖ + (θ∗a(κ))2‖g‖∞, (7)
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whereg is defined by (4) (see p.3).
Let us first consider the caseδa(x∗s∗) > τ , i.e.,

max(x∗s∗) > τ2 min(x∗s∗). From inequalities (6) and
(7) one has

τ2

(

α − θ∗a(κ)
αr+1

‖v2r‖ − (θ∗a(κ))2‖g‖∞
)

<

β − θ∗a(κ)
βr+1

‖v2r‖ + (θ∗a(κ))2‖g‖∞.

Recalling the equalityατ2 = β, and dividing both sides
of the inequality byθ∗a(κ), one gets

βr − αr

‖v2r‖ < θ∗a(κ)

(

1

α
+

1

β

)

‖g‖∞. (8)

If θ∗a(κ) is substituted byθ3 = 4(τ2r−1)

(1+4κ)(1+τ2)τ2r
√

n
, the

right hand side of inequality (8) increases, so the in-
equality is still true. After substitution one has

1 + 4κ

4
β < ‖g‖∞. (9)

Sincev2 ≤ βe andg = ∆x∆s (see the notation given
by (4)), inequality (9) gives

‖v‖2
∞ ≤ β <

4

1 + 4κ
‖g‖∞ =

4

1 + 4κ
‖∆x∆s‖∞.

(10)

One can check, that

‖v2r+1‖2 ≤ ‖v‖2
∞‖v2r‖2. (11)

Since(∆x, ∆s) is the solution of system (3) witha =
−v2r+2/‖v2r‖, by inequalities (10) and (11) we have

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

=

∥

∥

∥

∥

v2r+1

‖v2r‖

∥

∥

∥

∥

2

≤ ‖v‖2
∞.

Therefore, by the second statement of Lemma 11, we
get that inequality (10) contradicts to theP∗(κ) property
and vector∆x is a certificate for this fact.

Now we consider the case(x∗, s∗) is not feasible,
so there exists such an indexi, that eitherx∗

i < 0 or
s∗i < 0. Let us consider the maximum feasible step
size θ̂ < θ∗a(κ), for which (x(θ̂), s(θ̂)) = (x̂, ŝ) ≥ 0

holds and at least one of its coordinates is 0. For this
point x̂ ŝ 6= 0, elseθ̄ = θ̂ by the definition ofθ̄, and
the new point would be an exact solution, so the de-
crease of the complementarity gap would bexT s con-
tradicting with the assumption of the lemma. Therefore

0 6= max(x̂ ŝ) > τ2 min(x̂ ŝ) = 0, so inequality (8)
holds withθ̂. Because ofθ3 ≥ θ∗a(κ) > θ̂, inequality (9)
holds as well, and as we have already seen this means
that the matrixM is notP∗(κ) and the vector∆x is a
certificate for this fact.

The following lemma proves, that the algorithm is
well defined.
Lemma 13 At each iteration, when the value ofκ is
updated, then the new value ofθ∗a(κ) satisfies the in-
equalityx(θ̄)T s(θ̄) ≤ (1 − 0.25 ν θ∗a(κ))xT s.
Proof: In the proof of Theorem 6.1 in [11] (see The-
orem 21 in the Appendix) theP∗(κ) property is only
used for the vector∆x. When parameterκ is updated,
then we choose the new value in such a way, that the
inequality in the definition ofP∗(κ)-matrices (2) would
hold for vector∆x. Therefore the new point defined by
the updated value of step sizeθ∗a(κ) is feasible and it
is in theτ -neighborhood of the central path. Thus the
new value ofθ∗a(κ) was considered in the definition of
θ̄, sox(θ̄)T s(θ̄) ≤ (1 − 0.25 ν θ∗a(κ))xT s.

Now we are ready to state the complexity result for
the modified affine scaling algorithm for general LCPs
in case an initial interior point is given.
Theorem 14 Let (x0, s0) ∈ F0 such thatδa(x0s0) ≤
τ =

√
2. Then after at mostp iterations the affine scal-

ing algorithm either yields a vector(x̂, ŝ) such that
x̂T ŝ ≤ ε andδa(x̂ŝ) ≤ τ , or it gives a polynomial size
certificate that the matrix is notP∗(κ̃), whereκ̂ ≤ κ̃ is
the largest value of parameterκ and

p =































O
(

n(1+4κ̂)
1−2−r log (x0)T

s
0

ε

)

, if 0 < r ≤ 1, n ≥ 4

O
(

n(1 + 4κ̂) log (x0)T
s
0

ε

)

, if r = 1, n ≥ 4

O
(

22r−2n(1 + 4κ̂) log (x0)T
s
0

ε

)

,

if 1 < r andn sufficiently large.

Proof: The algorithm at each iteration either takes a
step, or detects, that the matrix is notP∗(κ̃) and stops.
If we take a Newton step, then by the definition of the
algorithm and by Lemma 13 the decrease of the com-
plementarity gap is at least0.25 ν θ∗a(κ)xT s. One can
see from the definition ofθ∗a(κ) that largerκ means
smallerθ∗a(κ), so smaller lower bound on the decrease
of the complementarity gap. Therefore, if the algorithm
stops with anε-optimal solution, then each Newton
step decreases the complementarity gap by more than
0.25 ν θ∗a(κ̂)xT s. It means that after at most as many
steps as in the original method the complementarity gap
decreases belowε in case for each vector during the al-
gorithm sufficient decrease of the complementarity gap
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is realized according to theP∗(κ̂) property or at an ear-
lier iteration the lack ofP∗(κ̃)-property is detected. This
observation, combined with the complexity theorem of
the original algorithm, see Theorem 6.1 in [11] (see also
Theorem 22 in the Appendix) proves our statement.

At the end of this subsection let us note that the case
r = 0 can be treated analogously.

4.2. Predictor-corrector IPMs

In this section we modify the algorithm proposed in
[18]. In this predictor-corrector algorithm we take affine
and centering steps alternately. In a predictor stepθ∗p(κ)
(see the definition in Lemma 15) is a theoretically fea-
sible step length if the matrixM isP∗(κ). Therefore, if
the maximal feasible step length is smaller thanθ∗p(κ),
then the matrix is notP∗(κ) with the actual value ofκ,
soκ should be increased. In a corrector step we return
to the smallerD(γ) neighborhood with step sizeθ∗c (κ)
(see the definition in Lemma 16) if the matrix isP∗(κ).
Accordingly, if the new point with step lengthθ∗c (κ) is
not in D(γ), then the matrixM is notP∗(κ) with the
actual value ofκ, soκ should be updated. Similarly to
the Affine Scaling algorithm, if in a predictor or cor-
rector step the new value ofκ cannot be defined by (5),
then the matrix is notP∗ and the current Newton direc-
tion is a certificate of it. Furthermore, if the new value
of κ is larger thañκ, then the matrix is notP∗(κ̃) and
the Newton direction is a certificate for it. The modified
algorithm is summarized in Algorithm 2.

Potra and Liu determined the maximum feasible pre-
dictor step length as the minimum ofn+1 number [18]
(θ̄ = min{θ̄i : 0 ≤ i ≤ n} see Lemma 23 in the Ap-
pendix). Furthermore, they proved, that if the matrixM
is aP∗(κ)-matrix, thenθ∗p(κ) andθ∗c (κ) (defined in the
following lemmas) give a feasible predictor and correc-
tor step length pair. The following lemmas show that if
eitherθ∗p(κ) or θ∗c (κ) is not a feasible step length, than
the matrix is not aP∗(κ)-matrix.
Lemma 15 If there exists an indexi (0 ≤ i ≤ n) such
that

θ̄i ≤ θ∗p(κ) :=
2
√

(1 − γ)γ

(1 + 4κ)n + 2
,

then matrixM is not a P∗(κ)-matrix and the affine
Newton direction is a certificate for this.
Proof: For anyκ ≥ 0 andn ≥ 1

θ∗p(κ) <
2

1 +
√

1 + 4κ
,

therefore ifθ̄0 ≤ θ∗p(κ), then by the definition of̄θ0 one
has

2

1 +
√

1 − 4eTg/n
= θ̄0 <

2

1 +
√

1 + 4κ
,

implying eTg/n < −κ, thus
∑

i∈I ∆xi∆si <
−κnµ = −κxT s. Therefore, by Lemma 11 the ma-
trix M is not aP∗(κ)-matrix and the affine Newton
direction∆x is a certificate for this.

If θ̄i ≤ θ∗p(κ), where0 < i ≤ n, then let consider the
following inequality, which was proved by Potra and
Liu in [18] on p.158:
√

(1 − γ)γ +
√

((1 + 4κ)n + 1)2 + γ(1 − γ) <

(1 + 4κ)n + 2.
(12)

Based on the proof of [17, Thm 3.3] (see Lemma 24 in
the Appendix), Lemma 8 and the definition oft, one has

2
√

(1 − γ)γ

(1 + 4κ)n + 2
= θ∗p(κ) ≥ θ̄i

≥ 2

1+
√

1+(tγ)−1(4‖g‖∞+ 4eTg/n)

≥ 2

1 +
√

1 + (tγ)−1(4‖g‖∞ + 1)

=
2
√

(1−γ)γ
√

(1−γ)γ+
√

((1+4κ)n+1)(4‖g‖∞+1)+γ(1−γ)
.

(13)

From inequality (13) and (12) we get

4‖g‖∞ + 1 > (1 + 4κ)n + 1. (14)

Since(∆x, ∆s) is a solution of system (3) witha =
−xs, and using inequality (14) withµ n = xT s, one has

‖∆x∆s‖∞ >
(1 + 4κ)

4
xT s =

1 + 4κ

4

∥

∥

∥

∥

a√
xs

∥

∥

∥

∥

2

,

so by the second statement of Lemma 11 one hasM /∈
P∗(κ), and∆x is a certificate for this.

Now let us analyze the corrector step.
Lemma 16 If θ∗c (κ) := 2γ

(1+4κ)n+1 is such a correc-
tor step length that(x̄(θ∗c (κ)), s̄(θ∗c (κ))) /∈ D(γ), then
the matrixM is not aP∗(κ)-matrix and the corrector
Newton direction is a certificate for this.
Proof: Notice that

x̄(θ)s̄(θ) = (1 − θ)x̄s̄ + θµ̄ e + θ2∆x̄∆s̄
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Algorithm 2 - Predictor-corrector algorithm

Input:
an upper bound̃κ > 0 on the value ofκ;
an accuracy parameterε > 0;
a proximity parameterγ ∈ (0, 1);
an initial point (x0, s0) ∈ D(γ);

begin
x := x0, s := s0, µ := (x0)T s0/n, κ := 0;
while xT s ≥ ε do

Predictor step
t = 1−γ

(1+4κ)n+1 ;
calculate the affine Newton direction(∆x, ∆s) with a = −xs;
if (the Newton direction does not exists, or it is not unique)then

return the matrix is notP0; % see Corollary 6

θ̄ = sup
{

θ̂ > 0 : (x(θ), s(θ)) ∈ D
(

(1 − t)γ
)

, ∀ θ ∈ [0, θ̂]
}

;

if
(

θ̄ < θ∗p(κ)
)

then
calculateκ(∆x); % see (5)
if (κ(∆x) is not defined)then

return the matrix is notP∗; % see Lemma 10
if (κ(∆x) > κ̃) then

return the matrix is notP∗(κ̃); % see Lemma 9
κ = κ(∆x);
updateθ∗p(κ) andθ∗c (κ);

x̄ = x(θ̄), s̄ = s(θ̄), µ̄ = x̄T s̄/n;
Corrector step

calculate the centering Newton direction(∆x̄, ∆s̄) with a = µe− x̄s̄;
if (the Newton direction does not exists, or it is not unique)then

return the matrix is notP0; % see Corollary 6
if
(

(x̄(θ∗c (κ)), x̄(θ∗c (κ))) /∈ D(γ)
)

calculateκ(∆x̄); % see (5)
if (κ(∆x̄) is not defined)then

return the matrix is notP∗; % see Lemma 10
if (κ(∆x) > κ̃) then

return the matrix is notP∗(κ̃); % see Lemma 9
κ = κ(∆x̄);
updateθ∗p(κ) andθ∗c (κ);

θ+ = argmin {µ̄(θ) : (x̄(θ), s̄(θ)) ∈ D(γ)} ;
x+ = x̄ + θ+∆x̄, s+ = s̄ + θ+∆s̄, µ+ = (x+)T s+/n;
x = x+, s = s+, µ = µ+;

end
end.
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and

µ̄(θ) = µ̄ + θ2 ∆x̄T ∆s̄

n
.

From Lemma 7 and the proof of [17, Thm 3.3] (see
Lemma 25 in the Appendix) we get

∆x̄T ∆s̄ ≤
∑

I+

∆x̄i∆s̄i ≤
1

4

∥

∥

∥

∥

µ̄e− x̄s̄√
x̄s̄

∥

∥

∥

∥

2

=
1

4
µ̄

∥

∥

∥

∥

∥

√

x̄s̄

µ̄
−
√

µ̄

x̄s̄

∥

∥

∥

∥

∥

2

≤ 1

4
µ̄

1 − (1 − t)γ

(1 − t)γ
n,

therefore

µ̄(θ) ≤
(

1 +
1 − (1 − t)γ

4(1 − t)γ
θ2

)

µ̄. (15)

Sinceθ∗c (κ) is an infeasible step length, there exists an
index i such that

x̄(θ∗c (κ))i s̄(θ∗c (κ))i < γµ̄(θ∗c (κ)), namely

(1 − θ∗c (κ))x̄is̄i + θ∗c (κ)µ̄ + (θ∗c (κ))2∆x̄i∆s̄i <

γµ̄(θ∗c (κ)).

The predictor point(x̄, s̄) ∈ D((1 − t)γ), so x̄is̄i ≥
(1 − t)γµ̄. Furthermore, by inequality (15) one has

(1 − θ∗c (κ))(1 − t)γµ̄ + θ∗c (κ)µ̄ + (θ∗c (κ))2∆x̄i∆s̄i <

γ

(

1 +
1 − (1 − t)γ

4(1 − t)γ
(θ∗c (κ))

2

)

µ̄,

which implies

(θ∗c (κ))2
∆x̄i∆s̄i

µ̄
< tγ − θ∗c (κ)(1 − (1 − t)γ)+

1 − (1 − t)γ

4(1 − t)
(θ∗c (κ))2.

(16)

One can check, the following equality by substituting
the values oft andθ∗c (κ)

0 ≤ (1 − γ)γ2

((1 + 4κ)n + 1)2
= −tγ + θ∗c (κ)(1 − (1 − t)γ)−

1 − (1 − t)γ

4(1 − t)γ

[

(1 + 4κ)n + γ
]

(θ∗c (κ))2.

Therefore

−1 − (1 − t)γ

4(1 − t)γ
(1 + 4κ)n (θ∗c (κ))2 ≥

tγ − θ∗c (κ)(1 − (1 − t)γ) +
1 − (1 − t)γ

4(1 − t)
(θ∗c (κ))2.

Combining this with inequality (16), and then consid-
ering the proximity measure estimation in the proof of
[17, Thm 3.3] (see Lemma 25 in the Appendix), we get

∆x̄i∆s̄i < −1 − (1 − t)γ

4(1 − t)γ
(1 + 4κ)nµ̄

≤ − (1 + 4κ)µ̄

4

∥

∥

∥

∥

∥

√

x̄s̄

µ̄
−
√

µ̄

x̄s̄

∥

∥

∥

∥

∥

2

. (17)

Since(∆x̄, ∆s̄) is a solution of system (3) witha =
µ̄e− x̄s̄, using inequality (17), one get

‖∆x̄∆s̄‖∞ >
(1 + 4κ)µ̄

4

∥

∥

∥

∥

∥

√

x̄s̄

µ̄
−
√

µ̄

x̄s̄

∥

∥

∥

∥

∥

2

=
1 + 4κ

4

∥

∥

∥

∥

a√
x̄s̄

∥

∥

∥

∥

2

.

Thus, by the second statement of Lemma 11, the ma-
trix M is not aP∗(κ)-matrix and the corrector Newton
direction∆x̄ is a certificate for this.

The following lemma proves, that the predictor-
corrector algorithm is well defined.
Lemma 17 At each iteration when the value ofκ is
updated, the new value ofθ∗p(κ) satisfies the inequality
θ̄ ≥ θ∗p(κ), and the new point(x̄(θ∗c (κ)), s̄(θ∗c (κ))),
determined by the new value of the corrector step size
θ∗c (κ), is in theD(γ) neighborhood.
Proof: In the proof of [17, Thm 3.3] (see Lemma 26 in
the Appendix) we use theP∗(κ) property only for the
vector∆x or∆x̄. When parameterκ is updated, then we
choose the new value in such a way that the inequality
in the definition ofP∗(κ)-matrices (2) holds for the
vectors∆x and∆x̄. Therefore the new value ofθ∗p(κ)

satisfies the inequalitȳθ ≥ θ∗p(κ), and the new value of
θ∗c (κ) determines a point in theD(γ) neighborhood.

Now we are ready to state the complexity result for
the modified predictor-corrector algorithm for general
LCPs in case an initial interior point is available.
Theorem 18 Let (x0, s0) ∈ F0 such that(x0, s0) ∈
D(γ). Then after at most

O
(

(1 + κ̂)n log
(x0)T s0

ε

)
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steps, wherêκ ≤ κ̃ is the largest value of parameterκ
throughout the algorithm, the predictor-corrector algo-
rithm generate a point(x̂, ŝ), such thatx̂T ŝ ≤ ε and
(x̂, ŝ) ∈ D(γ), or provides a certificate that the matrix
is notP∗(κ̃).

Proof: We follow the proof of the previous complexity
theorem (see Theorem 14). If we take a predictor and a
corrector step, then by Theorem 27 and Lemma 17 the
decrease of the complementarity gap is at least

3
√

(1 − γ)γ

2((1 + 4κ)n + 2)

xT s

n
.

This expression is a decreasing function ofκ, so at each
iteration, when we make a predictor and a corrector
step, the complementarity gap decreases at least by

3
√

(1 − γ)γ

2((1 + 4κ̃)n + 2)

xT s

n
.

We take at most as many iterations as in the original
predictor-corrector IPM with aP∗(κ̂)-matrix. Thus, re-
ferring to the complexity theorem of the original algo-
rithm (see Theorem 28 in the Appendix) we have proved
the theorem.

5. Summary

In this paper we have presented modifications of
affine scaling and the predictor-corrector interior point
algorithms that enable us to solve general LCPs with-
out the prerequisite to verify special properties of the
coefficient matrix. In particular, we have given two con-
structive proofs of the following EP type theorem from
paper [9]. We assume that the data are rational (solving
problems with computer this is a reasonable assump-
tion), ensuring polynomial encoding size of certificates
and polynomial complexity of the algorithms.
Theorem 19 Let an arbitrary matrixM ∈ Qn×n, a
vectorq ∈ Qn and a point(x0, s0) ∈ F0 be given.
Then one can verify in polynomial time that at least one
of the following statements hold

(1) problem LCP has a feasible complementary so-
lution (x, s) whose encoding size is polynomially
bounded.

(2) the matrixM is not in the class ofP∗(κ̃) and there
is a certificate whose encoding size is polynomially
bounded.
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6. Appendix

To make our paper self contained, we include those
results from [11,18] that are needed for our develop-
ments. All lemmas, theorems are converted to our no-
tations.
Lemma 20 (Lemma 4.3 in [12]) LetM be an arbitrary
real matrix,δa(xs) < τ and let(∆x, ∆s) be the affine
scaling direction.
(i) If 0 ≤ r ≤ 1 andθ ≤ 2√

n
, then

x(θ)T s(θ) ≤
(

1 − θ

2
√

n

)

‖v‖2.

(ii) If 1 ≤ r andθ ≤ 2τ2−2r

√
n

, then

x(θ)T s(θ) ≤
(

1 − θτ2−2r

2
√

n

)

‖v‖2.

Theorem 21 (Theorem 6.1 in [11]) LetM be aP∗(κ)-
matrix, r > 0, τ > 1 and let (∆x, ∆s) be the affine
scaling direction. If(x, s) ∈ F 0, δa(xs) ≤ τ , 0 ≤ θ
and

θ ≤ min

{

2

(1 + 4κ)τ

(

√

1 + 4κ +
1

τ2 n
− 1

τ
√

n

)

,

√
n

(r + 1)τ2r
,

4(τ2r − 1)

(1 + 4κ)(1 + τ2)τ2r
√

n

}

,

then(x(θ), s(θ)) is strictly feasible andδa(x(θ)s(θ))≤
τ .
Theorem 22 (Corollary 6.1 in [11])
Let M ∈ P∗(κ) and (x0, s0) ∈ F 0 such that
δa(x0s0) ≤ τ =

√
2.

• If 0 < r ≤ 1 and n ≥ 4, then we may chooseθ =
4(1−2−r)

3(1+4κ)
√

n
, hence the complexity of the affine scaling

algorithm isO
(

n(1+4κ)
1−2−r log (x0)T

s
0

ε

)

.

• If r = 1 and n ≥ 4, then we may chooseθ =
1

2(1+4κ)
√

n
, hence the complexity of the affine scaling

algorithm isO
(

n(1 + 4κ) log (x0)T
s
0

ε

)

.

• If r > 1 and n is sufficiently large, then we may
chooseθ = 1

2r(1+4κ)
√

n
, hence the complexity of the

affine scaling algorithm isO
(

22r−2n(1 + 4κ) log
(x0)T

s
0

ε

)

.

Lemma 23 (From expressions (3.16), (3.17) in [18])
LetM be an arbitrary matrix,(x, s) ∈ D(γ), (∆x, ∆s)
be the predictor direction in the predictor-corrector al-
gorithm and let the predictor step length beθ̄

=sup
{

θ̂>0 : (x(θ), s(θ))∈D
(

(1−t)γ
)

, ∀ θ ∈ [0, θ̂]
}

.

Furthermore, let̄θ0 =
2

1 +
√

1 − 4eTg/n
and

θ̄i =



















∞ if ∆i ≤ 0
1 if gi − (1 − t)γeTg/n = 0

2(v2
i
−(1−t)γ)

v2
i
−(1−t)γ+

√
∆i

if ∆i > 0 and

gi − (1 − t)γeTg/n 6= 0,

where

∆i = (v2
i − (1 − t)γ)2 − 4(v2

i − (1 − t)γ) (gi−
(1 − t)γeTg/n

)

, for each0 < i ≤ n.
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Then we have

θ̄ = min
{

θ̄i : 0 ≤ i ≤ n
}

.

Lemma 24 (From the proof of Theorem 3.3 in [18])
Let the assumptions of Lemma 23 hold, andθ̄i, 1 ≤ i ≤
n be as it is given in Lemma 23, then

θ̄i ≥
2

1 +
√

1 + (tγ)−1(4‖g‖∞ + 4eTg/n)
.

Lemma 25 (From the proof of Theorem 3.3 in [18])
Let M be an arbitrary matrix and let the point after
the predictor step in the predictor-corrector algorithm
satisfy(x̄, s̄) ∈ D((1 − t)γ). Then

∥

∥

∥

∥

∥

√

x̄s̄

µ̄
−
√

µ̄

x̄s̄

∥

∥

∥

∥

∥

2

≤ 1 − (1 − t)γ

(1 − t)γ
n.

Lemma 26 (From Theorem 3.3 in [18])
Let M be aP∗(κ)-matrix and(x, s) ∈ D(γ). Then the
predictor step length satisfy

θ∗p(κ) :=
2
√

(1 − γ)γ

(1 + 4κ)n + 2
≤ sup

{

θ̂ > 0 :

(x(θ), s(θ)) ∈ D
(

(1 − t)γ
)

, ∀ θ ∈ [0, θ̂]
}

,

Received 20-1-2009; revised 5-10-2009; accepted 16-11-2009

and the corrector step length

θ∗c (κ) :=
2γ

(1 + 4κ)n + 1

determines a point in theD(γ) neighborhood,
i.e., (x̄(θ∗c (κ)), s̄(θ∗c (κ))) ∈ D(γ), where (x̄, s̄) =
(x(θ∗p(κ)), s(θ∗p(κ))) ∈ D((1 − t)γ).
Lemma 27 (From Theorem 3.3 in [18])
Let M be an arbitrary matrix, (x, s) ∈ D(γ),
µg = xT s/n, the definition of parametersθ∗p(κ) and
θ∗c (κ) be the same as in Lemma 26,θ̄ be the predictor
and θ+ be the corrector step length,(∆x, ∆s) be the
predictor and(∆x̄, ∆s̄) the corrector Newton direc-
tion in the predictor-corrector algorithm. If̄θ ≥ θ∗p(κ)
and the step lengthθ∗c (κ) determines a point in the
D(γ) neighborhood, i.e.,(x̄(θ∗c (κ)), s̄(θ∗c (κ))) ∈ D(γ),
where(x̄, s̄) = (x(θ̄), s(θ̄)), then

µ+
g ≤

(

1 − 3
√

(1 − γ)γ

2((1 + 4κ)n + 2)

)

µg,

whereµ+
g = (x+)T s+/n = x̄(θ+)T s̄(θ+)/n.

Theorem 28 (Corollary 3.4 in [18])
Let M be aP∗(κ)-matrix and(x0, s0) be a feasible
interior point such that(x0, s0) ∈ D(γ). Then in at most

O
(

(1 + κ)n log (x0)T
s
0

ε

)

steps the predictor-corrector

algorithm produces a point(x̂, ŝ) such that(x̂, ŝ) ∈
D(γ) and x̂T ŝ ≤ ε.


