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Abstract

Linear Complementarity Problems (LCPs) belong to the ct#SSP-complete problems. Therefore we can not expect
a polynomial time solution method for LCPs without requirspme special property of the coefficient matrix. Following
our recently published ideas we generalize affine scalirdyfedictor-corrector interior point algorithms to solvedPs
with general matrices in EP-sense, namely, our generalinéetior point algorithms either solve the problems with
rational coefficient matrix in polynomial time or give a pofmial size certificate that our matrix does not belong to
the set ofP. (%) matrices, with arbitrary large, but apriori fixed, rationapositive.

Key words: linear complementarity problem, sufficient matriR,-matrix, interior point method, affine scaling method,
predictor-corrector algorithm.

1. Introduction In [9] we modified long-step path-followintpterior
Point MethodgIPMs) for LCPs with a general coeffi-
Consider the Linear Complementarity Problem  cient matrix M/. The modified algorithm either solves
(LCP): find vectorsk, s € R™ that satisfy the LCP, or gives a certificate that the matrix of the
X s3>0, (1) problem is notP. (&) (with apriori given but arbitrary

—Mx+s=q, xs=0 large ), or gives a certificate that the LCP has no so-

whereM € R™*" andq € R", and the notatioxs is lution. Algorithms that do not require any special prop-
used for the coordinatewise (Hadamard) product of the erty of the Matrix )/ are needed becasue it cannot be
vectorsx ands. verified in polynomial time if matrix\/ belongs to the

LCPs belong to the class dfP hard problems, since  class of matrices that allow polynomial time solvability
the feasibility problem of linear equations with binary of the LCP. Indeed, Tseng [21], proved that the problem
variables can be described as an LCP [14]. Therefore deciding whether a square matrix with rational entries
we can not expect an efficient (polynomial time) solu- is a column sufficient matrix is cdiP-complete, sug-
tion method for LCPs without requiring some special gesting that it can not be decided in polynomial time
property of the matrixj/. whether there is a finite nonnegativavith which ma-

trix M is P.(x). In this paper we show, that the idea
* The research of Tibor llles and Marianna Nagy has been Pe€hind the modification of long-step path-following al-
supported by the Hungarian National Research Fund OTKA gorithm is general, i.e., it can be adapted to other IPMs
No. T049789. The work of T. Terlaky has been supported by as well. Thus here we present the modifications of two

a grant from Lehigh University. well known IPMs: the affine scaling and predictor cor-
Email: Tibor lllés [tibor.illes@strath.ac.uk], Marianna Nagy rector algorithms.

[nmariann@cs.elte.hu], Tamas Terlaky [terlaky@Ielegdh].
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2 Tibor Illés et al. — General LCP

In [9] first we discussed the generalization of the em-  The nonnegative real numberdenotes the weight
bedding technique of Kojima et al. [14]. The embedding that need to be used at the positive terms so that the
technique is one of the options to ensure the availability weighted 'scalar product’ is nonnegative for each vector
of an initial interior point. This technique is indepen- x € R™. Therefore, naturall{P.(0) is the class of pos-
dent of the particular IPM, therefore we do not repeat it itive semidefinite matrices (setting aside the symmetry
in this paper. Thus we may assume without loss of gen- of the matrix\/).
erality that an initial interior feasible solution is known  Definition 2 A matrix M € R™*™ is called a P.-

The rest of the paper is organized as follows. The matrixif it is a P.(x)-matrix for somex > 0, i.e.
next section deals with the fundamental properties of
P.(x)-matrices and some well-known results are pre- P = U Pi(k).
sented. In Section 3 we summarize the results of paper k>0
[9]. Section 4 deals with the modification of two well
known interior point algorithms: the affine scaling and
predictor-corrector algorithms.

For ease of understanding and for self containedness
the main results of the papers [11,18] are summarized

in the Appendix. X(Mx) <0 implies X(Mx) =0,

The class of sufficient matrices was introduced by
Cottle, Pang and Venkateswaran [3].
Definition 3 A matrix M € R™*" is a column suffi-
cient matrixif for all x € R"

Notation: and row sufficientif M7 is column sufficient. Matrix
We use the following notations throughout the paper. M is sufficientif it is both row and column sufficient.
Scalars and indices are denoted by lowercase Latin let- Kojima et al. [14] proved that an.-matrix is col-
ters, vectors by lowercase boldface Latin letters, matri- umn sufficient and Guu and Cottle [7] proved that it is
ces by capital Latin letters, and finally sets by capital row sufficient, too. Therefore, eadh.-matrix is suffi-
calligraphic letters. LeR? (R”:) denote the nonnegative cient. Valiaho proved the other direction of inclusion
(positive) orthant ofR™. Further,I denotes the identity ~ [22], thus the class oP.-matrices coincides with the
matrix of appropriate dimension, add is the diagonal  class of sufficient matrices.

matrix whose diagonal elements are the coordinates of Definition 4 A matrixM € R™*" is a Py-matrix, if all
the vectorx, so X = diag(x). The vectorxs = Xs is of its principal minors are nonnegative.

the componentwise product (Hadamard product) of the  For further use we recall some results abButx)-
vectorsx ands, and fora € R the vectorx® denotes  and Py-matrices. The reader may consult the book of
the vector whoséth component i:*. The largest and  Kojima et al. [14, Lemma 4.1 p. 35] for the proof of the

smallest coordinate of a vector is denotedrbyx(x) following proposition.

andmin(x), respectively. We denote the vector of ones Proposition 5 A matrix M/ € R™*" is a Py-matrix if
by e. Furthermore, for a vectax and a matrix\/ we and only if

define the set§ , (x) = {1 <i<n: z;(Mx); > 0}

andZ_(x) = {1 <i <n: z;(Mz); <0}, which M = [_M I} is a nonsingular matrix

are used in the definition oP.(x) matrices. Finally, S X

FO:={(x,s) € R3" : —Mx+ s = q} denotes the set

. ) . iti i i nxn_o Qg
of strictly feasible solutions of the LCP. for any positive diagonal matricex, 5 € R

Proposition 5 enables us to check in strongly poly-
nomial time whether matri¥/ is Py or not. The next
2. Matrix classes and the Newton step statement is used to guarantee the existence and unique-
ness of Newton directions that are the solution of sys-
The class ofP, (x)-matrices were introduced by Ko-  tem (3) for various values of vectar € R”, wherea
jima et al. [14], and it can be considered as a general- depends on the particular IPM.
ization of the class of positive semidefinite matrices.  Corollary 6 Let M € R™"*" be aPy-matrix, (x,s) €
Definition 1 Let x > 0 be a nonnegative number. A 79 Then, for alla € R" the system

matrix M € R"*" is a P, (x)-matrixif for all R™
< P() X< ~MAx+As=0

3
(1+4k) Z xi(Mx); + Z xi(Mx); > 0.(2) sAx +xAs = a (3)
€T+(x) €T -(x) has a unique solutiofAx, As). O
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The following estimations for the Newton direction
are used in the complexity analysis of IPMs. The next
lemmas are proved by Potra in [17].

Lemma 7 Let(x,s) € F°andM be an arbitraryn xn
real matrix and(Ax, As) be a solution of system (3).
Then

Z Azx;As; < L H a |

T, Hlvxs
Lemma 8 Let the matrix}/ be aP,(x)-matrix,x,s €
FO anda € R". Let(Ax, As) be the solution of system
(3). Then

[AXAS|| 00 < (i + H)

2
VXs
|AxAs|; < <% + Ii)

2

a
VXS
a

st <[ (30) (3+0) |

The first statement’s proof in the previous lemma is
similar to the proof of Lemma 5.1 by lllés, Roos and
Terlaky [11]. The second estimation follows from the
Lemma 7 by using some properties®f (x)-matrices,
and the last estimation is a corollary of the first and
second statements using some properties of norms.

Let the current point béx, s) € Y and(Ax, As) be
the corresponding Newton direction. The new point with
step lengtt? is given by(x(6),s(0)) = (x + 0Ax,s +
fAs). We use the following notations for scaling

XS AxAs
v = ) g = 9
V u 1t

where in the affine scaling algorithm for the purpose
of scaling we have: = 1, otherwiseu > 0. In affine
scaling algorithms we use thg centrality measure

max (y/Xs)

min (y/xs)

In the predictor-corrector algorithm the so-called nega-
tive infinity neighborhoodD(), defined by Potra and

Liu in [18], is used. The negative infinity neighborhood
for v € (0,1) is defined as

(4)

da(xs) =

XTS

XSZ’Y—}v
n

whereF? := {(x, s) € R3" : —Mx + s=q} denotes
the set of strictly feasible solutions of the LCP. The
D(~) neighborhood is considered to be a “wide neigh-
borhood”.

D(y) := {(x, s)eF:

3. Previous results

In this section we restate those results of paper [9],
that we use in the rest of this paper.

The inequality in the definition ofP.(x)-matrices
gives the following lower bound or for any vector
x € R™:

1 xT Mx
43 er, mi(Ma);

The following two lemmas are immediate conse-

guences of the definition &?, () andP.-matrices.
Lemma 9 Let M be a realn x n matrix andk > 0 be
a given parameter. If there exists a vectoe R™ such
that x(x) > &, then the matrix}/ is notP, (%) andx
is a certificate for this fact.
Lemma 10 Let M be a realn x n matrix. If there
exists a vectorx € R” such thatZ,(x) = {i € Z :
x;(Mz); > 0} = 0, then the matrix}/ is notP, and
x is a certificate for this fact.

Our modified interior point algorithms are based on
the assumption that the problem data is rational, and
we are interested either to provide a polynomial size
solution to the problem, or to provide a certificate that
our matrix M is not aP,(&)-matrix for somer > 0.
During all iterations of our algorithm we have an actual
estimate fok, say. At the beginning of our algorithms,
we assume that = 0. In every iteration at different
stages of the algorithm we are checking whether our
assumption related tois violated. If we detect, that the
matrix M is notP, (%) with actualz, then the value of
will be increased. Its new value will be the lower bound
defined by the actual Newton directidwx. In IPMs the
P.(r) property need to hold only for the actual Newton
directionAx in various ways, for example this property
ensures that with a certain step size the new iterate
is in an appropriate neighborhood of the central path
and/or the complementarity gap is sufficiently reduced.
Consequently, if the desired results do not hold with
the current value, we update& by increasing it to the
lower bound determined by the Newton directidx,
ie.,

k> K(x) =

. —AxT As

A = s AnAs,

(As = M Ax).(5)
The following lemma is our main tool to verify when
matrix M fails to satisfy theP,(x) property. Further-
more, the concerned vectdyx is a certificate, whose
encoding size is polynomial when it is computed as the
solution of the Newton system (3) from rational data.
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We use this lemma during the analysis. The first state-
ment is simply the negation of the definition. We point
out in Lemma 12 that if Lemma 4.3 of [12] does not
hold, then the second statement is realized. We show in
Lemma 15 and Lemma 16 that if Theorem 3.3 of [18]
does not hold then the second, the third or the fourth
statement is realized.
Lemma 11 Let M be a realn x n matrix, x > 0
be a given parameter, angk,s) € FV. If any of the
following statements holds then the matfik is not a
P.(k)-matrix.

(1) There exists a vector € R™ such that

Z Y Wy + Z Y Ww; < O

€T 4 (y) i€Z _(y)

(1+4k)

wherew = My andZ(y) = {i € I : y,w; >
0L ZT_(y)={iel:yw; <0}
(2) There exists a solutiaqm\x, As) of system (3) such

that
1+ 4k a |?
||AXAS||OO > 4 \/—X_S
(3) There exists a solutiaqm\x, As) of system (3) such
that
Z Al‘lASl, — Z Az;As; | >
7:61+ 1€ _
1+4k || a 2
4 /xS
(4) There exists a solutiaqm\x, As) of system (3) such
that
a 2
AzTAs < —k \/ﬁ

4. Interior point algorithms in EP form

Hereafter we modify the following two popular fam-
ilies of IPMs:
o A family of affine scaling algorithms [11]:

The Newton direction is the solution of system (3)

2r+4+2
with 4 = 1 anda = —W, wherer > 0 is the
degree of the algorithm.
. o ||V2r+1||2
The choice ofa implies 3
[[v2"]]

—General LCP

e Predictor-corrector algorithms [18]:
The predictor Newton direction is the solution of sys-

tem (3) witha = —xs (the affine scaling direction
with » = 0).

2
The choice ofa implies \/%H =x"s;

The corrector (centering) Newton direction is the

solution of system (3) withh = pe — xs, where
XTS

p=—

The ch0|ce ofa implies

XS

4.1. Affine scaling IPMs

First we deal with affine scaling IPMs. We modify
the family of algorithms proposed in [11], where the
particular algorithms correspond to the degree 0 of
the algorithm, where = 0 gives the classical primal-
dual affine scaling algorithm, while = 1 gives the
primal-dual Dikin affine scaling algorithm [1]. Further,
there is a step length parameterthat depends on the
degreer (defined among the inputs of the algorithm),
andu = 1 in scaling (4).

We check not only the solvability and uniqueness of
the Newton system, but also the decrease of the comple-
mentarity gap after a step. For the actual value ofe
determing’ (), which is a theoretical lower bound for
the maximal feasible step length in the specified neigh-
borhood if the matrix)/ satisfies theP,.(x) property.
Therefore, if after a step the decrease of the comple-
mentarity gap is not large enough, it means, that the
matrix M is not P, (x) with the actual value of, so
we updates or exit the algorithm with a proper certifi-
cate. If the new value of can not be defined by (5),
then the matrix}/ is notP,, so we stop and the New-
ton directionAx is a certificate. If the new value of
is larger thar¥k, then the matrix is noP, (%), therefore
the algorithm stops as well anlix is a certificate. In
the rest of this subsection we consider the case0.

The modified algorithm is presented in Algorithm 1.

lllés et al. proved [11], that if the matrid/ is a
P.(k)-matrix, then the step lengt#(x) is feasible,
with that step size the new iterate stays within the
specified neighborhood and it provides the required
decrease of the complementarity gap. The following
lemma shows, if the decrease of the complementarity
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Algorithm 1 - Affine scaling algorithm

Input:
an upper boundi > 0 on the value ofk;
an accuracy parameter > 0;
a centrality parameterr;
the degree of scaling: > 0;

a strictly feasible initial point(x°,s®) € F° such thaty,(x°s%) < 7;

2/\/n, if 0<r<1
27272 [/, if 1 <

-

N 4% —1)

e 2 / 1 1
0% (k) .—mm{m< 1+4“+W_7\/5>’(

begin
x:=x%x% s:=8% k:=0;
while xT's > ¢ do

calculate the Newton directiof\x, As) with a =

r+ 172" (1+4k)(1 + 72)727/n’ V}'

V22 |

if (the Newton direction does not exist or it is not unigtign

return the matrix is notPy;
6 = argmin {X(G)TS(G) :
if (x(é)Ts(é) > (1-0.25v0%(k))
calculatex(Ax);
if (x(Ax) is not defined}hen
return the matrix is notP,;
if (k(Ax) > &) then
return the matrix is notP, (k);

x''s) then

Kk = k(AX);
updated’ (x);
x =x(0), s = s(f);
end
end.

% see Corollary 6

5o (x(6),5(0)) <7, (x(6),5(6)) >0} ;

% see (5)
% see Lemma 10
% see Lemma 9

% it depends ork

gap is not sufficient, then the matri¥ does not belong
to the class ofP.(x)-matrices.
T

Lemma 12 If x(6)"s(0) > (1 —0.25v0%(k))x"s,
that is, the decrease of the complementarity gap within
thed, < 7 neighborhood is not sufficient, then the ma-
trix M of the LCP is notP,(x) with the actual value

of k. The Newton directiod\x serves as a certificate.

Proof: Based on [12, Lem 4.3] (see Lemma 20 in
the Appendix) the complementarity gap @t(x) is
smaller than(1 — 0.25v6%(x)) x’'s, furthermore by
Theorem 21, ifM is a P.(x)-matrix, then the point
(x*, s*) = (x(0%(k)),s(0%(k))) is feasible. Therefore,
if x(6)Ts(6) > (1—-0.25v0%(k))x"s, then because
the step lengthd’ (k) is not considered in definition of
6 (see the affine scaling algorithm), so eittigr, s*) is
not feasible, or this point is not in the neighborhood
of the central path, namely, (x*s*) > 7. We show

that both cases imply, that the matdx is not P, (k)
with the actuak value.

Let us denote the first three terms in the definition
of 6% (k) by 6,1, 62, andfs, respectively. We follow the
proof of Theorem 6.1 in [11] (see Theorem 21 in the
Appendix). We need to reconsider only the expressions
depending onx. There exist positive constants and
3 such that? = 2 andae < v? < Se. The function

t7‘+l . . . .
o(t) =t — GW remains monotonically increasing
i i [l it
on the interval0, 8] if § < 6, < (rIW' Additionally,

inequalities (17) in [11] hold foé < 65, thus forf* (x)
too:

aT+1 * 2
W - (‘%(“)) g0

ﬁr+1
[[v2r

min(v*?) > o — 0% (k)

(6)

max(v*?) < 5~ 6;(x) +(05(r))? gl ()
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whereg is defined by (4) (see p.3). 0 # max(x8) > 72min(x8) = 0, so inequality (8)

Let us first consider the casg (x*s*) > 7, ie., holds withd. Because ofi; > 0% () > 0, inequality (9)
max(x*s*) > 72 min(x*s*). From inequalities (6) and  holds as well, and as we have already seen this means
(7) one has that the matrix) is not P, (x) and the vectoAx is a

_— certificate for this fact. ]
-2 (a — 07 (k) o _ (9;(/@))2|g||oo> < The following lemma proves, that the algorithm is
[[v2]] 1 well defined.
N Bt N 9 Lemma 13 At each iteration, when the value efis
B = ax) [[v2 |  (0a(9) gl oo- updated, then the new value &f(x) satisfies the in-

equalityx(0)Ts(0) < (1 —0.25v60%(x))x"s.
Recalling the equality7* = 3, and dividing both sides  Proof: In the proof of Theorem 6.1 in [11] (see The-

of the inequality by’ (x), one gets orem 21 in the Appendix) th@, () property is only
. , used for the vectoAx. When parametet is updated,
pr—o" o* 1,1 8 then we choose the new value in such a way, that the
2r < a(ﬁ) + Hg”OO ( ) . . . e ey .
[[v2]] p inequality in the definition oP, (x)-matrices (2) would

. _ A1) hold for vectorAx. Therefore the new point defined by
If 0; (k) is substituted bys = 53— == the  the updated value of step si#g(x) is feasible and it
right hand side of inequality (8) increases, so the in- is in the r-neighborhood of the central path. Thus the

equality is still true. After substitution one has new value ofd’ (k) was considered in the definition of
0, sox(0)"s(9) < (1 —0.25v0%(k))x"s. [ |
Lt B < lglloo- (9) Now we are ready to state the complexity result for
4 the modified affine scaling algorithm for general LCPs

Sincev? < e andg = AxAs (see the notation given in case an initial ingerié)r poing is given. 0.0
by (4)), inequality (9) giVGS Theorem 14 Let (X ,S ) e FY such thatéa(x S ) <

T = /2. Then after at most iterations the affine scal-
ing algorithm either yields a vectofx,s) such that

4
2 _
MEREA 1+4k lgllo = 1+ 4k 1AxAS|oc. %78 < e andd,(%8) < 7, or it gives a polynomial size
(20) certificate that the matrix is nd®. (%), wherek < & is
the largest value of parameterand
One can check, that
o (”“*i“? lo <X°>TS°) fo<r<ln>4
V22 < vl v (12) ) =
. . _ _ O(n(1+4/%)log%),ifr:1,n24
Since(Ax, As) is the solution of system (3) with = p= A
—v2+2/|lv2" |, by inequalities (10) and (11) we have 0] (22T—2n(1 + 4#) log &) :
a II? St |2 if 1 <r andn sufficiently large.
— 2
H xs|| ||V < vl Proof: The algorithm at each iteration either takes a

step, or detects, that the matrix is rt(%) and stops.
Therefore, by the second statement of Lemma 11, we If we take a Newton step, then by the definition of the
get that inequality (10) contradicts to tRe(~) property algorithm and by Lemma 13 the decrease of the com-

and vectorAx is a certificate for this fact. plementarity gap is at least25 v 6 (x) x's. One can
Now we consider the casgx*,s*) is not feasible,  see from the definition of?(x) that largers means
so there exists such an indéxthat eitherz; < 0 or smallerd? (x), so smaller lower bound on the decrease
s; < 0. Let us consider the maximum feasible step of the complementarity gap. Therefore, if the algorithm
sizef < 0% (x), for which (x(6),s(d)) = (%,8) > 0 stops with ane-optimal solution, then each Newton

holds and at least one of its coordinates is 0. For this step decreases the complementarity gap by more than
pointx§ # 0, elsed = 6 by the definition ofd, and 0.25v 0% (k) xTs. It means that after at most as many
the new point would be an exact solution, so the de- steps as in the original method the complementarity gap
crease of the complementarity gap wouldsbés con- decreases belowin case for each vector during the al-
tradicting with the assumption of the lemma. Therefore gorithm sufficient decrease of the complementarity gap
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is realized according to th@, () property or at an ear-  therefore ifg, < 05 (x), then by the definition ofi, one
lier iteration the lack ofP, (< )-property is detected. This  has

observation, combined with the complexity theorem of 9 - 9
the original algorithm, see Theorem 6.1 in [11] (see also = =0y < A
Theorem 22 in the Appendix) proves our statememt. 1+ /1 —4elg/n L+ v1i+ds

At the end of this subsection let us note that the case

implying e” < =k, thus Y. ; Az;As; <
r = 0 can be treated analogously. plying e”g/n r Yier Arills

—knp = —kx!s. Therefore, by Lemma 11 the ma-
trix M is not a’P.(k)-matrix and the affine Newton
4.2. Predictor-corrector IPMs directionAx is a certificate for this.

If 9; < 9;(11), where0 < ¢ < n, then let consider the

1;3” Thish_sectioor:_ we modify the Ialg(_)rri1thm proiosi? in following inequality, which was proved by Potra and
[18]. In this predictor-corrector algorithm we take affine . "o [18] on p.158:

and centering steps alternately. In a predictor 8fgp)

(see the definition in Lemma 15) is a theoretically fea- /T — )y + /(1 + 4r)n + 1)2 +7(1 — ) <

sible step length if the matriX/ is P.(x). Therefore, if (1 4 4r)n + 2.

the maximal feasible step length is smaller tiigtw), (12)
then the matrix is noP,.(x) with the actual value of,

so« should be increased. In a corrector step we return Based on the proof of [17, Thm 3.3] (see Lemma 24 in

to the smallerD(v) neighborhood with step siz€ («) the Appendix), Lemma 8 and the definitiontobne has
(see the definition in Lemma 16) if the matrix®s ().

Accordingly, if the new point with step leng# («) is 2/ (1 =7v)y 0 (k) > 7.

not in D(v), then the matrix\/ is not P, (x) with the (I4+4x)n+2 p(K) 2 O

actual value ok, sox should be updated. Similarly to 2

the Affine Scaling algorithm, if in a predictor or cor- =z 1+/1+ ) (dl|gllo + deTg/n)
rector step the new value afcannot be defined by (5), 7 9 Blleo &
then the matrix is ndP, and the current Newton direc- >

tion is a certificate of it. Furthermore, if the new value L+ /14 () (4llglleo +1)

of x is larger tharg, then the matrix is noP, (<) and 27/ (1=7)y

the Newton direction is a certificate for it. The modified

algorithm is summarized in Algorithm 2. V= )+ D(Allgloe+ D90 =)

(13)

Potra and Liu determined the maximum feasible pre- From inequality (13) and (12) we get
dictor step length as the minimumoft+ 1 number [18]
(0 = min{f; : 0 < i < n} see Lemma 23 in the Ap- 4)|glloe + 1> (1 +4k)n + 1. (14)
pendix). Furthermore, they proved, that if the matvix ) ) _ ]
is aP, (x)-matrix, therd; (x) and; (x) (defined inthe ~ Since (Ax, As) is a solution of system (3) with =
following lemmas) give a feasible predictor and correc- —XS: and using inequality (14) withn = x"'s, one has
tor step length pair. The following lemmas show that if 2

eitherd; () or 6 (x) is not a feasible step length, than || AxAs||o. > (1 + 4r) Tg_ 1tdrl a ’

the matrix is not &P, (x)-matrix. 4 4 VXS

Lhemma 15 If there exists an indek (0 < i <n) such o4 by the second statement of Lemma 11 oneMag

that 9 /T P.«(k), andAx is a certificate for this. [ |
6, < 0% (k) = (7_7)7’ Now let us analyze the corrector step.

(14 4r)n +2 Lemma 16 If 6(r) := sy 1S Such a correc-
then matrix M is not a P.(x)-matrix and the affine  tor step length thatx(0}(x)),s(0}(x))) ¢ D(v), then
Newton direction is a certificate for this. the matrix M is not aP.(x)-matrix and the corrector
Proof: For anyx > 0 andn > 1 Newton direction is a certificate for this.

Proof: Notice that
2

0y (k) < T AT %(0)s(0) = (1 — 0)xs + Ojie + O*AXAS
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Algorithm 2 - Predictor-corrector algorithm

Input:
an upper bounds > 0 on the value ofk;
an accuracy parameter > 0;
a proximity parametery € (0,1);
an initial point (x°,s%) € D(v);
begin
x:=x%5:=58% p:= (x°)7s"/n, Kk := 0;
while xT's > ¢ do

Predictor step
= —1=v .
(14+4k)n+1"
calculate the affine Newton directigi\x, As) with a = —xs;
if (the Newton direction does not exists, or it is not unigtnen

return the matrix is notPy; % see Corollary 6
6 = sup {é >0: (x(0),s(0) € D((1—t)y), Vo€ [0,@]} ;
if (0 <65(x)) then

calculatex(Ax); % see (5)
if (x(Ax) is not definedthen

return the matrix is notP,; % see Lemma 10
if (x(Ax) > &) then

return the matrix is notP, (%); % see Lemma 9
k = K(AXx);

updatet; (x) and@; (x);
x=x(0), s =s(0), i =x"s/n;

Corrector step
calculate the centering Newton directioAx, As) with a = ue — xs;

if (the Newton direction does not exists, or it is not unigtinen

return the matrix is notPy; % see Corollary 6
it ((x(07()),%(02(x))) & D(7))

calculatex(Ax); % see (5)
if (x(Ax) is not definedthen

return the matrix is notP,; % see Lemma 10
if (x(Ax) > &) then

return the matrix is notP, (%); % see Lemma 9
k = K(AX);

updatet; (x) and@; (x);
0" = argmin {(0) : (x(0),5(6)) € D()}:
xt =x+0tAx, st =5+ 0T As, pt = (x")Tst/n;
x=x", s=s", u=pt;
end
end.
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and Therefore
AxT As
A(0) = i+ 62 : 1—(1—t)y 2
_ >
o, (4 O 2
From Lemma 7 and the proof of [17, Thm 3.3] (see 1—(1—t)y
Lemma 25 in the Appendix) we get ty — 0o (k)(1 — (L —t)y) + T (65 (x))%.

ne — Xs

XS

2

1
< T §< 7 A5 < =
Ax* AS ZA%ASZ < 4‘

1
4
1
< —
4
therefore
- 1—(1 =17 ) -
H<|1+——+7196 .
o) < (14 0 )
Sinced (k) is an infeasible step length, there exists an
indexi such that

2(0: (k)i (02 (k))i < (6 (K)),

(15)

namely

(1= 07 (k)Zi5: + 07 (5) + (07 (k))2AZ;A5; <
(07 (k).

The predictor point(x,s) € D((1 — ¢)v), SO Z;5; >
(1 — t)yp. Furthermore, by inequality (15) one has

(1= 02(k))(1 = thyin + 02 (k)i + (07 (1)) * A A5; <

3 (14 e e0?)
which implies
PRI <ty = 011 (1 - 1)+
e
(16)

One can check, the following equality by substituting
the values of and# (k)

(1=-y)* .
0S (s g 1 = 1 H R0 = (= 0=
ﬁ [(1+4m)n +7](07 ().

Combining this with inequality (16), and then consid-
ering the proximity measure estimation in the proof of
[17, Thm 3.3] (see Lemma 25 in the Appendix), we get

1—(1—t)y
41 —t)y

~(L+4r)i

AZ;AS; < (1+4K)np

17)

Since (Ax, As) is a solution of system (3) witlh =
e — X8, using inequality (17), one get

(1 4
IARAS| > + K ﬁ _
1+4I€ a
T4 NG

Thus, by the second statement of Lemma 11, the ma-
trix M is not aP,(x)-matrix and the corrector Newton
directionAx is a certificate for this. [ |
The following lemma proves, that the predictor-
corrector algorithm is well defined.
Lemma 17 At each iteration when the value &f is
updated, the new value 6f () satisfies the inequality
0 > 07(x), and the new pointx(0;(x)),s(0:(x))),
determined by the new value of the corrector step size
0% (), is in theD() neighborhood.
Proof: In the proof of [17, Thm 3.3] (see Lemma 26 in
the Appendix) we use th@, (k) property only for the
vectorAx or Ax. When parameteyr is updated, then we
choose the new value in such a way that the inequality
in the definition of P, (x)-matrices (2) holds for the
vectorsAx and Ax. Therefore the new value 6f; ()
satisfies the inequalit§y > 05 (x), and the new value of
0% (x) determines a point in th® () neighborhoodm
Now we are ready to state the complexity result for
the modified predictor-corrector algorithm for general
LCPs in case an initial interior point is available.
Theorem 18 Let (x°,s%) € F° such that(x",s°) €
D(~). Then after at most

o (1-+ s 20)
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6. Appendix

To make our paper self contained, we include those
results from [11,18] that are needed for our develop-
ments. All lemmas, theorems are converted to our no-
tations.

Lemma 20 (Lemma 4.3in[12]) Lef\/ be an arbitrary
real matrix, d,(xs) < 7 and let(Ax, As) be the affine
scaling direction.

(i)If 0<r<1landf < 2%, then
x(0)7s(0) < (1- =22) v
_ 2ﬁ .

11

27_2727“
n

@iYIf 1<randb < , then

9T2—2r

x0)7s0) < (1 3= ) Il

Theorem 21 (Theorem 6.1 in [11]) Leff be aP.(k)-
matrix, » > 0, 7 > 1 and let(Ax, As) be the affine
scaling direction. If(x, s) € F°, §,(xs) < 7,0 < 0
and

0 < min 2z \/1—|—4,‘$-1-L—L
- (1+4k)T 2n  Tyn)’

v 4 1)
(r+ 172" (1+4)(1+72)72/n [’

then(x(9), s(0)) is strictly feasible and,, (x(8)s(f)) <
T.
Theorem 22 (Corollary 6.1 in [11])
Let M € P.(k) and (x°,s°) € FO such that
5a(x%80) < 7= V2.
e If 0 < r <1andn > 4, then we may choost =
%, hence the complexity of the affine scaling
0\T _O
algorithm is© ("l(ig‘f’f) log & )E s
o If r = 1 andn > 4, then we may choose =
hence the complexity of the affine scaling

1
(1t dr)/n’
(XO)TSO

algorithm isO (n(l + 4r) log ==
e If » > 1 and n is sufficiently large, then we may
choose) = m, hence the complexity of the

affine scaling algorithm isO (22" ~?n(1 + 4x) log

(XO)TSO

Lemma 23 (From expressions (3.16), (3.17) in [18])
Let M be an arbitrary matrix(x, s) € D(v), (Ax, As)
be the predictor direction in the predictor-corrector al-
gorithm and let the predictor step length Be

:sup{é>o: (x(0),8(0)) €D((1—t)7),¥0 € [o,é]}.

Furthermore, le®, =

1—4eTg/n
00 if A; <0
3 1 if gi—(1—t)yelg/n=0
i = 2w —(1=t)7) .
gi — (1 —t)ye'g/n #0,
where

Ap= (v = (L=1)7)" = 4(v] — (L= )7) (gi—
(1—t)ye'g/n), foreach0d <i<n.
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Then we have

f = min {9 O<z<n}

Lemma 24 (From the proof of Theorem 3.3 in [18])
Let the assumptions of Lemma 23 hold, &ndl < i <
n be as it is given in Lemma 23, then

_ 2

0, > .
1+ /1+ (7)1 (4]|gll + 4Tg/n)

Lemma 25 (From the proof of Theorem 3.3 in [18])
Let M be an arbitrary matrix and let the point after
the predictor step in the predictor-corrector algorithm
satisfy(x,s) € D((1 — t)y). Then

Lemma 26 (From Theorem 3.3 in [18])
Let M be aP.(x)-matrix and(x,s) € D(v). Then the
predictor step length satisfy

XS

1-(1-t)y
1—1)y

cin o 2/ (=)
bp() := (1+4k)n+2

(x(6),s(8)) € D((1 — t)y),Y0 € [0, é]} ,

<sup{é>0:
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and the corrector step length

N 2y
be(r) := (14+4k)n+1

determines a point in theD(y) neighborhood,
.., (x(0%(x)),s8(05(x))) € D(v), where (x,8) =
(x(6; (), 8(05())) € D((1 — )).
Lemma 27 (From Theorem 3.3 in [18])
Let M be an arbitrary matrix, (x,s) € D(y),
g = x"s/n, the definition of parameter’(x) and
6* (k) be the same as in Lemma ZBbe the predictor
and 6™ be the corrector step lengtfAx, As) be the
predictor and (Ax, As) the corrector Newton direc-
tion in the predictor-corrector algorithm. I > 65 (x)
and the step lengtl’ (x) determines a point in the
D(v) neighborhood, i.e(x(0%(x)),8(68%(x))) € D(v),
where(x,s) = (x(),s(f)), then

ut < <1_ (3\/(1—7)7 )ug,

2((14+4k)n +2)

wherep) = (x7)T's™/n = x(07)Ts(6%)/n.

Theorem 28 (Corollary 3.4 in [18])

Let M be aP.(k)-matrix and (x°,s°) be a feasible
interior point such tha(x ,sY) € D(). Thenin at most

@) ((1 + k)nlog CHELE ) s’ steps the predictor-corrector

algorithm produces a pointx, §) such that(x,s) €
D(y) andxTs <e.



