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On-line bin packing with two item sizes

Gregory Gutina Tommy Jensen Anders Yeo

aDepartment of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

Abstract

We study the on-line bin packing problem (BPP). In BPP, we aregiven a sequenceB of itemsa1, a2, . . . , an and a
sequence of their sizes(s1, s2, . . . , sn) (each sizesi ∈ (0, 1]) and are required to pack the items into a minimum number
of unit-capacity bins. LetR∞

{α,β} be the minimal asymptotic competitive ratio of an on-line algorithm in the case when
all items are only of two different sizesα and β. We prove thatmax{R∞

{α,β} : α, β ∈ (0, 1]} = 4/3. We also obtain
an exact formula forR∞

{α,β} whenmax{α, β} > 1

2
. This result extends the result of Faigle, Kern and Turan (1989) that

R∞
{α,β} = 4

3
for β = 1

2
− ǫ and α = 1

2
+ ǫ for any fixed nonnegativeǫ < 1

6
.

Key words: On-line algorithms, bin packing, competitive ratio.

1. Introduction

In this paper we study the classical on-line bin pack-
ing problem (BPP), which is one of the oldest and
most well-studied problems in optimization. In BPP,
we are given a sequenceB of itemsa1, a2, . . . , an and
a sequence of their sizes(s1, s2, . . . , sn) (each size
si ∈ (0, 1]) and are required to pack the items into a
minimum number of unit-capacity bins. In other words,
we need to partitionB into a minimum numberm of
subsetsB1, B2, . . . , Bm so that

∑

ai∈Bj
si ≤ 1 for each

j = 1, 2, . . . , m. For surveys of BPP, see [3–5].

For anyS ⊆ (0, 1], we letB(S) denote the set of all
sequencesB with all item sizessi ∈ S, i = 1, 2, . . . , n.
For a given sequenceL and an on-line algorithmA, let
A(L) be the number of bins required forL by algorithm
A; let OPT(L) be the minimum number of bins needed
to pack the items ofL off-line, that is, when they are
all available at once. Theasymptotic competitive ratio
R∞

S (A) of A onB(S) is

limsupN→∞ max{ A(L)
OPT(L) : L ∈ B(S),

OPT(L) = N}.

With S = (0, 1] we note thatR∞
S (A) = R∞(A) is

the usual asymptotic competitive ratio of an on-line bin
packing algorithmA. LetR∞

S be the minimum possible
asymptotic competitive ratio of an algorithm for the bin
packing problem onB(S). An on-line algorithmA with
R∞

S (A) = R∞
S is called anoptimalalgorithm.

Email: Gregory Gutin [gutin@cs.rhul.ac.uk], Tommy Jensen
[tommy@cs.rhul.ac.uk], Anders Yeo [anders@cs.rhul.ac.uk].

Ullman [11] was the first to investigate the on-line
bin packing problem. He proved that the FIRST FIT al-
gorithm has asymptotic competitive ratio 1.7. This re-
sult was then published in [7]. Yao [12] showed that
REVISED FIRST FIT has asymptotic competitive ra-
tio 5

3 and proved that every on-line BPP algorithm has
asymptotic competitive ratio at least 1.5. Yao’s upper
bound was improved by Seiden [9] to 1.58889, which
is currently the best result. Brown [1] and Liang [8] in-
dependently improved Yao’s lower bound to 1.53635.
This was further improved by van Vliet [10] to 1.54014.
Chandra [2] showed that the preceding lower bounds
also apply to randomized algorithms. So, currently no
optimal on-line BPP algorithm is known.

In many applications of BPP, there is only a small
number of item sizes and, thus, it makes sense to study
on-line algorithms specialized to pack inputs from
B(S), whereS is a small set of item sizes.

In this paper, we studyR∞
{α,β}, whereα, β ∈ (0, 1].

Our main result is thatmax{R∞
{α,β} : α, β ∈ (0, 1]}

= 4/3 (see Theorem 9). The easy lower bound
max{R∞

{α,β} : α, β ∈ (0, 1]} ≥ 4/3 was shown in
[8,12] (see also Lemma 1 in this paper) and we prove
the matching upper bound is a series of lemmas.

We also studyR∞
{α,β} in more detail for the case

max{α, β} > 1
2 . In Theorem 3, we obtainR∞

{α,β} for

all values ofα andβ providedmax{α, β} > 1
2 . Our

result extends the result of Faigle, Kern and Turan [6]
that R∞

{α,β} = 4/3 for β = 1
2 − ǫ andα = 1

2 + ǫ for

every fixed nonnegativeǫ < 1
6 (see Theorem 9 in [6]).

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.
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It seems much harder to obtain an exact formula for
R∞

{α,β} for all values ofα andβ. Also, for t ≥ 3 and
BPP onB(S) with |S| ≤ t, it seems much more difficult
to design optimal on-line algorithms. We believe that
these problems are worth studying from both theoretical
and practical points of view.

In what follows, letα and β denote the two item
sizes, where0 < β ≤ α ≤ 1. For simplicity we will
denote items of sizeα by α-items, and items of sizeβ
by β-items. We assume that all bins have capacity 1.
Let xi denote the largest integer such thatxiβ + iα ≤ 1
(i.e. at mostxi items of sizeβ will fit in a bin together
with i items of sizeα). We say thatalmost allbins of
a setS satisfy a certain property if all or all except one
bin in S satisfy this property.

2. When α > 1
2

We start by proving a lower bound forR∞
{α,β}.

Lemma 1 If α > 1/2, then

R∞
{α,β} ≥

x2
0

x2
0 − x1(x0 − x1)

≥
4

3
.

PROOF. If x1 = 0 then the lemma clearly holds as

in this case x2

0

x2

0
−x1(x0−x1)

= 1, so we may assume that

x1 > 0. Clearly we also havex0 > x1.
Let A be an optimal algorithm for the givenα and

β, and assume that the input starts of withk β-items.
Let Bfull be the number of bins produced byA, which
do not have space for an additionalα-item, and letBα
be the number of bins where anα-item would still fit.
SinceA has asymptotic competitive ratioR∞

{α,β}, the
following holds, for some constantc∗, not depending
on k.

Bfull + Bα − c∗ ≤ R∞
{α,β}

k

x0

Furthermore if anotherk
x1

α-items arrive after thek β-
items, then the following must also hold.

Bfull +
k

x1
− c∗ ≤ R∞

{α,β}

k

x1

Observe that the above two inequalities are equivalent
to the following:

x0
Bfull + Bα

k
≤ R∞

{α,β} +
c∗x0

k
,

x1
Bfull

k
+ 1 ≤ R∞

{α,β} +
c∗x1

k

Let r′k = R∞
{α,β} + c∗x0

k
and observe thatr′k tends

to R∞
{α,β} whenk goes to infinity, asc∗ andx0 do not

depend onk. Furthermore, sincek ≤ x0Bfull + x1Bα
andx0 > x1 we conclude that the following must hold.

x0
Bfull + Bα

x0Bfull + x1Bα
≤ r′k,

x1
Bfull

x0Bfull + x1Bα
+ 1 ≤ r′k

LetB =
Bfull

Bα
and letγ = x1

x0

. The above inequalities
can be rewritten as follows:

f(B) ≤ r′k, wheref(t) = t+1
t+γ

g(B) ≤ r′k, whereg(t) = γt
t+γ

+ 1

Sinceγ is a constant and0 < γ < 1, observe that
f(t) is a decreasing function andg(t) is an increas-
ing function. Thus, iff(t0) = g(t0), then f(t0) ≤
max{f(B), g(B)} ≤ r′k.

This implies the following:

r′k ≥ g(
1 − γ

γ
) = f(

1 − γ

γ
) =

(1 − γ)/γ + 1

(1 − γ)/γ + γ

=
1

1 − γ(1 − γ)
=

1

1 − x1

x0

(1 − x1

x0

)

=
x2

0

x2
0 − x1(x0 − x1)

As mentioned earlierr′k tends toR∞
{α,β} whenk goes

to infinity, which implies thatR∞
{α,β} ≥

x2

0

x2

0
−x1(x0−x1)

.

By (x0 − 2x1)
2 ≥ 0, we have x2

0

x2

0
−x1(x0−x1)

≥ 4
3 .

Lemma 2 provides the matching upper bound for
R∞

{α,β}, and its proof consists in exhibiting an algo-
rithm for this problem and a suitable upper bound
for its asymptotic performance ratio. The difficulty to
overcome when packing items of sizesα > 1/2 and
β < 1/2 on-line is to keep a proper balance between
the numbers of those bins which become packed full
solely with β-items, and those bins which are packed
so as to have enough room left for anα-item in addi-
tion to anyβ-items. Accumulating too many bins of
the former type during the packing procedure will be
harmful if subsequent input items turn out to be all
α-items, each of which will need to be put in an addi-
tional bin, thus leaving the solution far from optimal.
Whereas a surplus of bins of the latter type leaves the
solution suboptimal in the event that no new input items
arrive. Thus throughout execution of the algorithm de-
scribed in the following proof, the primary objective is
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to distribute the arrivingβ-items so as to keep close to
a certain ratioQ between the two types of bins at all
times, whereQ depends on the sizesα and β. With
this in mind, the algorithm is fairly straightforward.

Corollary 2 If α > 1/2, thenR∞
{α,β} ≤

x2

0

x2

0
−x1(x0−x1)

.

PROOF. If x1 = 0 then it is not difficult to obtain
R∞

{α,β} = 1, so assume thatx1 > 0. Clearly we also
havex0 > x1.

Let Q = x1

x0−x1

, and consider the following on-line
algorithm.

Our algorithm will maintain four sets of bins,A0, A1,
B0 andB1. They will have the following properties.

A0 consists of bins with 0α-items and at least 1β-
item

A1 consists of bins with 1α-item and at least 1β-
item

B0 consists of bins with 0α-items and at mostx1

β-items
B1 consists of bins with 1α-item and 0β-items

The bins inA0 are committed to being filled entirely
with β-items. All otherβ-items that arrive will be dis-
tributed in bins fromA1 andB0, where they, respec-
tively, either join an already packedα-item, or wait for
an α-item to arrive and be packed into the same bin.
The bins inB1 are used only in case of a momentary
surplus ofα-items.

Leta0, a1, b0 andb1 denote the number of bins inA0,
A1, B0 andB1, respectively. The algorithm proceeds
by the following guidelines:
• If the next item is anα-item, andb0 > 0, then add

the item to a bin inB0, and move the resulting bin
from B0 to A1. If b0 = 0 then put theα-item in a
new bin, and add it toB1.

• If the next item is aβ-item, then apply one of the
following rules, listed in order of priority:
· If a bin in A1 does not containx1 β-items, then

add theβ-item to this bin.
· If a bin in A0 does not containx0 β-items, then

add theβ-item to this bin.
· If a bin in B0 does not containx1 β-items, then

add theβ-item to this bin.
· If b1 > 0, then add theβ-item to a bin inB1, and

move the bin toA1.
· Otherwise add theβ-item to a new bin. Ifb0+a1

a0+1 <

Q then add the new bin toB0, and if b0+a1

a0+1 ≥ Q
then add the new bin toA0.

Observe thata0 = b0 = a1 = 0 if and only if the
input does not haveβ-items, in which case the algorithm
produces the optimal solution. Thus, in the rest of the
proof, we may assume that at least oneβ-item is present
in the input, somax{a0, b0, a1} > 0.

During the entire execution of the algorithm, the fol-
lowing properties hold.
(a): Almost all bins inA0 containx0 β-items.
(b): Almost all bins inA1 andB0 containx1 β-items.
(c): b0 = 0 or b1 = 0. This is clearly true in the be-

ginning of the algorithm and one can see from the
algorithm description thatbi becomes positive only
if b1−i = 0 for i = 0, 1.

(d): b0+a1

a0

≥ Q (for a0 = 0, b0+a1

a0

= ∞ since
max{a0, b0, a1} > 0, so we may assume that
a0 > 0). Indeed, the operations of the algorithm,
except the very last one, do not decrease the value
of b0+a1

a0

. The last operation only decreases the

value of b0+a1

a0

by increasing the value ofa0 by 1

if b0+a1

a0+1 ≥ Q. So even after decreasing the value of

the fraction b0+a1

a0

, it remains at leastQ. Moreover,

just aftera0 turns from zero to one,b0+a1

a0

≥ Q by
the corresponding condition of the last operation of
the algorithm.

(e): b0+a1−1
a0+1 < Q. This is the case as the fraction

b0+a1−1
a0+1 equals−1 in the beginning of the algorithm

and can only increase if aβ-item arrives and one of
the last two rules is applied. However, by (c), since
the most recent increase ofb0 (using the last rule),
the second last operation is no longer used. Notice
that at the time whenb0 was last increased we had
b0+a1

a0+1 < Q.

Let r =
x2

0

x2

0
−x1(x0−x1)

.

(f): If b1 > 0, thena1(r − 1) + a0(
(r−1)x0

x1

− 1) ≥ 0.
This holds by the following:

a1(r − 1) + a0(
(r − 1)x0

x1
− 1)

= a0(r − 1)[
a1

a0
+ (

x0

x1
−

1

r − 1
)]

≥ a0(r − 1)

[Q +
x0(x0 − x1)

x1(x0 − x1)
−

x2
0 − x1(x0 − x1)

x1(x0 − x1)
]

= a0(r − 1)[
x2

1

x1(x0 − x1)
+

−x2
1

x1(x0 − x1)
]

= 0
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In the above argument, we use the inequalityQ ≤
a1/a0, which holds due to (c) and (d).

Since we are only considering asymptotic ratios, we
may by (a) and (b) assume that all bins inB0 andA1

containx1 β-items, and all bins inA0 containx0 β-
items. By (d) and (e),b0+a1−1

a0+1 < Q ≤ b0+a1

a0

. Define
a′
1 = a1 − e, a′

0 = a0 + e, andf(e) = (b0 + a′
1)/a′

0

for e ∈ [0, 1].

We have

f(1) = b0+a1−1
a0+1 ≤ f(e) ≤ b0+a1

a0

= f(0).

Sincef(e) is a continuous function, for some value of

e ∈ [0, 1), b0+a′

1

a′

0

= Q. Let us fix these values ofa′
0 and

a′
1.

Letopt denote the size of the optimal solution. We are
now ready to prove thatr ·opt−(a0+a1+b0+b1) ≥ 0,
which would complete the proof. Before considering the
following four cases, let us estimate the value ofopt.
Since eachα-item requires a separate bin, the optimum
equalsa1 + b1 plus γ, the minimum number of bins
required to accommodate theβ-items not fitting into the
bins from A1 and B1. Taking into consideration that
a1 + b1 bins with α-items in them may accommodate
up to (a1 + b1)x1 β-items,

γ ≤ max{0, (a1x1 + a0x0 + b0x1 − (a1 + b1)x1)/x0}.

Thus,

opt ≥ a1 + b1 + max{0, (a0x0 + b0x1

− b1x1)/x0}. (1)

Case 1. b0 > 0: By (c), we observe thatb1 = 0 and,
by (1) anda0 + a1 = a′

0 + a′
1, we get the following:

r · opt − (a0 + a1 + b0)

≥ r(a1 +
x0a0 + x1b0

x0
) − a0 − a1 − b0

= (r − 1)a′
0 + (r

x1

x0
− 1)b0 + (r − 1)a′

1

≥ a′
0[(r − 1) + (r

x1

x0
− 1) ·

b0 + a′
1

a′
0

]

= a′
0r[1 −

1

r
+ (

x1

x0
−

1

r
) · Q]

= a′
0r[1 − (1 −

x1(x0 − x1)

x2
0

)

+ (
x1

x0
− (1 −

x1(x0 − x1)

x2
0

)) ·
x1

x0 − x1
]

= a′
0r[

x1(x0 − x1)

x2
0

−
(x0 − x1)

2

x2
0

·
x1

x0 − x1
]

= a′
0r[

x1(x0 − x1)

x2
0

−
x1(x0 − x1)

x2
0

]

= 0

This completes the proof of Case 1.

Case 2. b1 > 0 and a0x0 ≥ b1x1: Observe that by (c)
b0 = 0 and by (1)opt ≥ b1+a1+

a1x1+a0x0−(b1+a1)x1

x0

.
Note that r − 1 − rx1/x0 < 0, as 1 − 1/r =
x1(x0−x1)/x2

0 < x1/x0. This implies the following
(by (f) anda0x0 ≥ b1x1):

r · opt − (a0 + a1 + b1)

≥ r(b1 + a1 + a0 −
x1b1

x0
) − a0 − a1 − b1

= (r − 1)(a0 + a1) + b1(r − r
x1

x0
− 1)

≥ (r − 1)(a0 + a1) +
a0x0

x1
· (r − r

x1

x0
− 1)

= a1(r − 1) + a0(
(r − 1)x0

x1
− 1)

≥ 0

Case 3. b1 > 0 and a0x0 < b1x1: By (1), b1 + a1 =
opt, which implies the following (by (f) anda0x0 <
b1x1):

r · opt − (a0 + a1 + b1)

= (r − 1)a1 + (r − 1)b1 − a0

≥ (r − 1)a1 + (r − 1)a0
x0

x1
− a0

= a1(r − 1) + a0(
(r − 1)x0

x1
− 1)

≥ 0

Case 4. b0 = 0 and b1 = 0: Observe that our solution
a0 + a1 is optimal in this case, so we are done.
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This completes the proof.

The above two lemmas immediately imply the fol-
lowing:

Theorem 3 If α > 1/2, thenR∞
{α,β} =

x2

0

x2

0
−x1(x0−x1)

.

Corollary 4 [6] We haveR∞
{α,β} = 4

3 for β = 1
2 − ǫ

andα = 1
2 + ǫ for any fixed nonnegativeǫ < 1

6 .

PROOF. Observe thatx0 = 2 andx1 = 1, and apply
the formula in Theorem 3.

3. When α ≤ 1
2

Lemma 5 If 1/3 < α ≤ 1/2 andx2 + x0 ≥ 2x1, then

R∞
{α,β} ≤

x2

0

x2

0
−x2(x0−x2)

.

PROOF. Whenx2 + x0 ≥ 2x1 there exists an optimal
solution with the following properties. Almost all bins
contain either twoα-items or noα-items, as if two bins
contain oneα-item each, then they can be rearranged so
that one bin contains twoα-items and the other contains
no α-item.

We now use the algorithm given in Lemma 2, with
item sizesβ and2α, by always placing either zero or
two α-items in a bin (except possibly one bin). By the
comment above on the optimal solution we get the de-
sired bound from Lemma 2.

Lemma 6 If 1/3 < α ≤ 1/2 andx2 + x0 < 2x1, then
R∞

{α,β} ≤ 4
3 .

PROOF. Before we describe the desired algorithm we
prove a few claims, wherek = ⌊α/β⌋.

Claim A. x1 = x2 + k + 1 and x0 = x2 + 2k + 1 =
2x1 − x2 − 1.

Note that1−α−(k+1)β ≤ 1−2α ≤ 1−α−kβ. So
since exactlyx2 β-items will fit in a space of1−2α, we
will be able to fit at leastx2+k β-items in1−α, but not
more thanx2+k+1 β-items. Thereforex1 = x2+k+i1,
where i1 ∈ {0, 1}. Analogouslyx0 = x1 + k + i2,
where i2 ∈ {0, 1}. Howeverx2 + x0 < 2x1 implies
thatx2 + (x1 + k + i2) < x1 + (x2 + k + i1), which in
turn implies thati2 < i1. Thereforei1 = 1 andi2 = 0,
which proves the claim.

Claim B. x1

x0

≤ 3
4 and x2

x0

< 1
3 .

As α ≥ β, we observe thatk ≥ 1. Furthermore
k ≥ x2, since otherwise1−2α ≥ βx2 ≥ β(k+1) > α,

a contradiction againstα > 1/3. Sincex2 + 1 + (4k +
3x2+3) ≤ k+k+(4k+3x2+3), we get the following:

4x1 = 4(k + x2 + 1) ≤ 3(2k + x2 + 1) = 3x0

This proves the first part of the claim. The second part
follows from the fact that3x2 ≤ 2k+x2 = x0−1 < x0.
This completes the proof of claim B.

Now consider the algorithm that greedily places all
items in bins, without ever putting anα-item and a
β-item in the same bin. All bins, except at most two,
will either containx0 β-items or twoα-items. Assume
that our algorithm producesa bins containing twoα-
items andb bins containingx0 β-items. Note that there
exists an optimal solution where either there is no bin
containing twoα-items or no bin containing zeroα-
items, as a bin with twoα-items and a bin with zero
α-items can be rearranged so that we get two bins each
with oneα-item andx2 + x0 ≤ 2x1. We aim to show
(a + b)/opt ≤ 4/3. The following three cases exhaust
all possibilities.

Case 1. bx0 ≥ 2x1a: The optimal solution in this
case must contain2a bins each with oneα-item (andx1

β-items) and a further⌈ bx0−2ax1

x0

⌉ bins containing no
α-items. As we are considering the optimal asymptotic
performance ratio, we may assume that the optimal so-
lution uses exactlyopt = 2a+ bx0−2ax1

x0

bins. By Claim
B andb ≥ 2x1a/x0, this implies the following:

opt = 2a + b − 2a
x1

x0
− b/5 + b/5

≥
4

5
b + 2a − 2a

x1

x0
+

2x1a

5x0

=
4

5
b + a

(

2 −
8x1

5x0

)

≥
4

5
b + a

(

2 −
8 · 3

5 · 4

)

=
4

5
b +

4

5
a

The above implies(a + b)/opt ≤ 5
4 ≤ 4

3 , which com-
pletes the proof of Case 1.

Case 2. bx0 < 2x1a and bx0 ≥ x2a: The optimal
solution in this case must contain either one or twoα-
items in each bin. Assume thatc bins contain exactly
twoα-items in an optimal solution. Note that2c+(opt−
c) = 2a and x2c + x1(opt − c) = bx0. By inserting
c = 2a − opt (from the first equation) into the second
equation, we getx2(2a− opt) + x1(2opt− 2a) = bx0,
and henceopt(2x1 − x2) = bx0 + 2ax1 − 2ax2. It
follows, usingb ≥ ax2

x0

, x0 +1 = 2x1−x2 and x2

x0

< 1
3

(by Claim B) that
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opt =
bx0 + 2a(x1 − x2)

2x1 − x2

=
3

4
b + a

2x1 − 2x2

x0 + 1
+ b(

x0

x0 + 1
−

3

4
)

≥
3

4
b + a

x0 − x2 + 1

x0 + 1
+ a

x2

x0
(

x0

x0 + 1
−

3

4
)

=
3

4
b + a

x0 − x2 + 1 + x2

x0 + 1
− a

3x2

4x0

≥
3

4
b + a − a

1

4
=

3

4
(b + a)

This completes the proof of Case 2.

Case 3. bx0 < x2a: In this case the optimal solution
is opt = a ≥ 3

4a+ 1
4 ·

bx0

x2

≥ 3
4 (a+b), which completes

the proof.

Lemma 7 If α ≤ 1/3, thenR∞
{α,β} ≤ 4/3.

PROOF. We simply fill every bin greedily, without
placing items of sizesα andβ in the same bin. Note
that almost all bins containingα-items (β-items) do not
fit an additional item of sizeα (β).

Now consider a bin containing onlyα-items, which
does not fit an additional item of sizeα. Letz denote the
space left in the bin, and note thatz < α andz ≤ 1−3α.
Thus,z ≤ 1 − 3α < 1 − 3z. This impliesz < 1/4.
Analogously for every bin that contains onlyβ-items
and does not fit an additional item of sizeβ, the space
left in the bin is at most1/4. As all bins except possibly
two are at least 75% full, we get the desired asymptotic
performance ratio.

Lemma 8 If 0 < β ≤ α ≤ 1, thenR∞
{α,β} ≤ 4/3.

PROOF. If α > 1/2, then by Lemma 2 andx1(x0 −
x1) ≤ (x0

2 )2 (this follows from (x0 − 2x1)
2 ≥ 0) we

have

R∞
{α,β} ≤

x2
0

x2
0 − x1(x0 − x1)

≤
x2

0

x2
0 − (x0

2 )2

=
1

1 − 1
4

=
4

3

If 1/3 < α ≤ 1/2 and x2 + x0 ≥ 2x1, then by
Lemma 5 we have

R∞
{α,β} ≤

x2
0

x2
0 − x2(x0 − x2)

.

Similarly to the previous argument, we can now prove
thatR∞

{α,β} ≤ 4
3 .

If 1/3 < α ≤ 1/2 andx2 + x0 < 2x1, then Lemma
6 implies the desired result. We are now done by
Lemma 7.

Lemmas 1 and 8 imply immediately the following:

Theorem 9 We havemax{R∞
{α,β} : α, β ∈ (0, 1]} =

4/3.
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