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Note on Upper Bounds for TSP Domination Number

Gregory Gutina , Angela Kollera and Anders Yeoa

aDepartment of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Abstract

The domination number,domn(A, n), of a heuristicA for the Asymmetric TSP is the maximum integerd = d(n)
such that, for every instanceI of the Asymmetric TSP onn cities,A produces a tourT which is not worse than at least
d tours inI including T itself. Two upper bounds on the domination number are proved.
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1. Introduction

The Asymmetric Traveling Salesman Problem
(ATSP)is stated as follows. Given a weighted com-

plete digraph(K∗
n, w), find a Hamilton cycle (called a

tour) in K∗
n of minimum cost. Here theweight function

w is a mapping fromA(K∗
n), the set of arcs inK∗

n,
to the set of reals. Theweight of an arcxy of K∗

n is
w(x, y). Theweightw(D) of a subdigraphD of K∗

n is
the sum of the weights of arcs inD.

It is well known that most combinatorial optimiza-
tion problems including the ATSP areNP -hard. Due
to the lack of polynomial time algorithms to solveNP -
hard problems to optimality, researchers and practition-
ers often use various heuristics such as local search and
genetic algorithms that usually provide good solutions
for instances that arise in practice. Very often heuris-
tics do not have any theoretical guarantee for the op-
timization problem under consideration, i.e., for some
instances of the problem the value of heuristic solution
is arbitrary far from the optimum. Hence, normally var-
ious heuristics for the same problem are compared in
computational experiments. The outcomes of computa-
tional experiments heavily rely on the authors choice of
families of instances and, thus, are non-objective.

With this state of affairs in mind, Glover and Pun-
nen [3] suggested a new approach for evaluation of
heuristics that compares heuristics according to their
so-called domination ratio. We define this notion only
for the ATSP since its extension to other problems
is obvious. Thedomination number, domn(A, n), of
a heuristicA for the ATSP is the maximum integer
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d = d(n) such that, for every instanceI of the ATSP
on n cities,A produces a tourT which is not worse
than at leastd tours inI including T itself. The ratio
domr(A, n) = domn(A, n)/(n− 1)!, i.e., the domina-
tion number divided by the total number of tours, is the
domination ratioof A.

It is known the nearest neighbor algorithm for the
ATSP is of domination number 1 (first proved in [7]).
This means that for everyn ≥ 2, there is an instance
of ATSP onn vertices, for which the nearest neighbor
algorithm finds theuniqueworst possible tour. Since
the number of distinct tours in ann-vertex complete
digraph is(n − 1)!, we see that the nearest neighbor
algorithm is of domination ratio1/(n − 1)!. There are
many ATSP algorithms of domination number at least
(n − 2)! [8], i.e., in the worst case they guarantee that
their tour is at least as good as(n− 2)!− 1 other tours.

Clearly, the domination ratio is well defined for ev-
ery heuristic and, for the same optimization problem, a
heuristic with higher domination ratio may be consid-
ered a better choice than a heuristic with lower domi-
nation ratio. Ben-Arieh et al. [1] compared two heuris-
tics for the generalized ATSP. The heuristics performed
equally well in computational experiments, but it was
proved that one of them has a significantly larger domi-
nation number. For the Symmetric TSP, Punnen, Margot
and Kabadi [9] showed that after a polynomial number
of iterations the domination number of the best improve-
ment 2-Opt that uses small neighborhoods significantly
exceeds that of the best improvement local search based
on neighborhoods of much larger cardinality. Punnen,
Margot and Kabadi [9] and other papers have led Gutin
and Yeo [6] to the conclusion that the cardinality of the
neighborhood used by a local search is not the right
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measure of the effectiveness of the local search. Domi-
nation ratio, along with some other parameters such as
the diameter of the neighborhood digraph (see Gutin,
Yeo and Zverovitch [8]), provide a much better mea-
sure.

Already Glover and Punnen [3] were interested in the
possible range of the domination number ofpolynomial
timeATSP heuristics. There are several papers devoted
to lower bounds on the maximum domination number
of such heuristics, for references see [8]. In this note
we concentrate on upper bounds.

In [5], upper bounds were obtained for the cardinality
of polynomial time searchable ATSP neighborhoods. In
this note we show that minor changes in the proofs of
[5] lead us to stronger and more general results on the
maximum possible domination number of ATSP heuris-
tics when the running time is restricted. We also prove a
result, Theorem 2..4, that gives an absolute upper bound
of the domination number of polynomial time ATSP
heuristics. Theorem 2..4 improves Theorem 20 in [9].
Our proof is a modification of the proof of Theorem 20
in [9].

2. Upper Bounds

It is realistic to assume that any ATSP algorithm
spends at least one unit of time on every arc of the
complete digraphK∗

n that it considers. We use this
assumption in the rest of this section.

Theorem 2..1 LetA be an ATSP heuristic that runs in
time at mostt(n). Then the domination number ofA
does not exceedmax1≤n′≤n(t(n)/n′)n′

.

PROOF. LetD = (K∗
n, w) be an instance of ATSP and

let H be the tour thatA returns, when its input isD. Let
DOM(H) denote all tours inD which are not lighter
thanH includingH itself. We assume thatD is a worst
instance forA, namelydomn(A, n) = |DOM(H)|.
SinceA is arbitrary, to prove this theorem, it suffices to
show that|DOM(H)| ≤ max1≤n′≤n(t(n)/n′)n′

.
Let E denote the set of arcs inD, whichA actually

examines; observe that|E| ≤ t(n) by the assumption
above. LetA(H) be the set of arcs inH . Let F be
the set of arcs inH that are not examined byA, and
let G denote the set of arcs inD − A(H) that are not
examined byA.

We first prove that every arc inF must belong to
each tour ofDOM(H). Assume that there is a tour
H ′ ∈ DOM(H) that avoids an arca ∈ F. If we assign

to a a very large weight,H ′ becomes lighter thanH, a
contradiction.

Similarly, we prove that no arc inG can belong to
a tour in DOM(H). Assume thata ∈ G and a is
in a tour H ′ ∈ DOM(H). By making a very light
(possibly negative), we can ensure thatw(H ′) < w(H),
a contradiction.

Now let D′ be the digraph obtained by contract-
ing the arcs inF and deleting the arcs inG, and let
n′ be the number of vertices inD′. Note that every
tour in DOM(H) corresponds to a tour inD′ and,
thus, the number of tours inD′ is an upper bound on
|DOM(H)|. In a tour ofD′, there are at mostd+(i)
possibilities for the successor of a vertexi, whered+(i)
is the out-degree ofi in D′. Hence we obtain that

|DOM(H)| ≤
n′

∏

i=1

d+(i) ≤





1

n′

n′

∑

i=1

d+(i)





n′

≤

(

t(n)

n′

)n′

,

where we applied the arithmetic-geometric mean in-
equality. �

Corollary 2..2 Let A be an ATSP heuristic that runs
in time at mostt(n). Then the domination number of
A does not exceedmax{et(n)/e, (t(n)/n)n}, wheree
is the basis of natural logarithms.

PROOF. Let U(n) = max1≤n′≤n(t(n)/n′)n′

. By dif-
ferentiatingf(n′) = (t(n)/n′)n′

with respect ton′ we
can readily obtain thatf(n′) increases for1 ≤ n′ ≤
t(n)/e, and decreases fort(n)/e ≤ n′ ≤ n. Thus, if
n ≤ t(n)/e, then f(n′) increases for every value of
n′ < n andU(n) = f(n) = (t(n)/n)n. On the other
hand, ifn ≥ t(n)/e then the maximum off(n′) is for
n′ = t(n)/e and, hence,U(n) = et(n)/e. �

The next assertion follows directly from the proof of
Corollary 2..2.
Corollary 2..3 Let A be an ATSP heuristic that runs
in time at mostt(n). For t(n) ≥ en, the domination
number ofA does not exceed(t(n)/n)n.

Note that the restrictiont(n) ≥ en is important since
otherwise the bound of Corollary 2..3 can be invalid.
Indeed, if t(n) is a constant, then forn large enough
the upper bound becomes smaller than 1, which is not
correct since the domination number is always at least
1.
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It is proved in [4] that there areO(n)-time ATSP al-
gorithms of domination number2Θ(n). It follows from
the last corollary that this result cannot be improved.

Theorem 2..4 Unless P=NP, there is no polynomial
time ATSP algorithm of domination number at least
(n − 1)! − ⌊n − nα⌋! for any constantα < 1.

PROOF. Assume that there is a polynomial time algo-
rithm H with domination number at least(n − 1)! −
⌊n− nα⌋! for some constantα < 1. Choose an integer
s > 1 such that1s < α.

Consider a weighted complete digraph(K∗
n, w). We

may assume that all weights are non-negative as other-
wise we may add a large number to each weight. Choose
any pair of distinct verticesu andv in K∗

n. Consider an-
other complete digraphD on ns − n vertices, in which
all weights are 0 and which is vertex disjoint fromK∗

n.
Add all possible arcs betweenK∗

n andD such that the
weights of all arcs coming intou and going out ofv
are 0 and the weights of all other arcs areM , whereM
is larger thann times the maximum weight in(K∗

n, w).
Let the resulting weighted complete digraph be denoted
by K∗

ns and note that we have now obtained an instance
(K∗

ns , w′) of ATSP.
Apply H to (K∗

ns , w′) (observe thatH is polynomial
in n for (K∗

ns , w′)). Notice that there are exactly(ns −
n)! Hamilton cycles in(K∗

ns , w′) of weight L, where
L is the weight of a lightest Hamilton(u, v)-path in
K∗

n. Each of the(ns−n)! Hamilton cycles is obviously
optimal. Observe that the domination number ofH on
K∗

ns is at least(ns −1)!−⌊ns − (ns)α⌋!. However, for
sufficiently largen, we have

(ns − 1)!−⌊ns − (ns)α⌋! ≥ (ns − 1)!− (ns −n)! + 1

asnsα ≥ n + 1 for n large enough. Thus, a Hamilton
cycle produced byH is always among the optimal solu-
tions (forn large enough). This means that we can ob-
tain a lightest Hamilton(u, v)-path inK∗

n in polynomial
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time, which is impossible since the lightest Hamilton
(u, v)-path problem is a well-known NP-hard problem.
We have arrived at a contradiction.�
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